Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 32(3): 342-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177406

RESUMO

DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.


Assuntos
Doenças Musculares , Distrofias Musculares , Humanos , Distroglicanas/genética , Distroglicanas/metabolismo , Haploinsuficiência , Distrofias Musculares/genética , Músculo Esquelético/patologia , Doenças Musculares/patologia
2.
Neuropediatrics ; 54(6): 426-429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37257496

RESUMO

Emery-Dreifuss muscular dystrophy (EDMD) is a rare disease characterized by early contractures, progressive muscle weakness, and cardiac abnormalities. Different subtypes of EDMD have been described, with the two most common forms represented by the X-linked EDMD1, caused by mutations in the EMD gene encoding emerin, and the autosomal EDMD2, due to mutations in the LMNA gene encoding lamin A/C. A clear definition of the magnetic resonance imaging (MRI) pattern in the two forms, and especially in the rarer EDMD1, is still lacking, although a preferential involvement of the medial head of the gastrocnemius has been suggested in EDMD2. We report a 13-year-old boy with mild limb girdle muscle weakness, elbow and ankle contractures, with absence of emerin at muscle biopsy, carrying a hemizygous frameshift mutation on the EMD gene (c.153dupC/p.Ser52Glufs*9) of maternal inheritance. Minor cardiac rhythm abnormalities were detected at 24-hour Holter electrocardiogram and required ß-blocker therapy. MRI scan of the thighs showed a mild diffuse involvement, while tibialis anterior, extensor digitorum longus, peroneus longus, and medial gastrocnemius were the most affected muscles in the leg. We also provide a review of the muscular MRI data in EDMD patients and highlight the relative heterogeneity of the MRI patterns found in EDMDs, suggesting that muscle MRI should be studied in larger EDMD cohorts to better define disease patterns and to cover the wide disease spectrum.


Assuntos
Contratura , Distrofia Muscular de Emery-Dreifuss , Distrofia Muscular de Emery-Dreifuss Ligada ao Cromossomo X , Masculino , Humanos , Criança , Adolescente , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofia Muscular de Emery-Dreifuss/diagnóstico por imagem , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Mutação , Debilidade Muscular , Imageamento por Ressonância Magnética
3.
Lab Invest ; 103(3): 100037, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925196

RESUMO

Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.


Assuntos
Trifosfato de Adenosina , Sarcoglicanopatias , Humanos , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/metabolismo , Sarcoglicanopatias/metabolismo , Transdução de Sinais , Receptores Purinérgicos P2Y2
4.
Commun Med (Lond) ; 3(1): 28, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792810

RESUMO

BACKGROUND: Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, but has not been specifically investigated in patients affected by severe and milder forms of spinal muscular atrophy (SMA). METHODS: In this two-center retrospective study, we investigated signatures of neuroinflammation in forty-eight pediatric male and female SMA1 (n = 18), male and female SMA2 (n = 19), and female SMA3 (n = 11) patients, as well as in a limited number of male and female non-neurological control subjects (n = 4). We employed a Bio-Plex multiplex system based on xMAP technology and performed targeted quantitative analysis of a wide range of pro- and anti-inflammatory cytokines (chemokines, interferons, interleukins, lymphokines and tumor necrosis factors) and neurotrophic factors in the cerebrospinal fluid (CSF) of the study cohort before and after Nusinersen treatment at loading and maintenance stages. RESULTS: We find a significant increase in the levels of several pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-2, IL-8, IL-12, IL-17, MIP-1α, MCP-1, and Eotaxin) and neurotrophic factors (PDGF-BB and VEGF) in the CSF of SMA1 patients relative to SMA2 and SMA3 individuals, who display levels in the range of controls. We also find that treatment with Nusinersen significantly reduces the CSF levels of some but not all of these neuroinflammatory molecules in SMA1 patients. Conversely, Nusinersen increases the CSF levels of proinflammatory G-CSF, IL-8, MCP-1, MIP-1α, and MIP-1ß in SMA2 patients and decreases those of anti-inflammatory IL-1ra in SMA3 patients. CONCLUSIONS: These findings highlight signatures of neuroinflammation that are specifically associated with severe SMA and the neuro-immunomodulatory effects of Nusinersen therapy.


Spinal muscular atrophy (SMA) is an inherited disorder which leads to muscle weakening. Three therapies have recently been developed, including Nusinersen. However, the effect of SMA on the immune system and how this could be affected by Nusinersen is unknown. The immune system protects the body from infection and, in some disorders, misfunctions and damages the body in the absence of infection. Here, we analyze components of the immune system in body fluids from SMA patients before and after treatment with Nusinersen. The immune system was found to be more active in patients with more severe disease. Treatment with Nusinersen reduced the levels of some, but not all of these, components of the immune system. Thus, treatments that impact the immune system might improve symptoms in patients with SMA.

5.
Brain ; 145(2): 596-606, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515763

RESUMO

Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Sarcoglicanopatias , Adulto , Criança , Humanos , Debilidade Muscular , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Estudos Retrospectivos , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
6.
Front Neurol ; 12: 735488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675869

RESUMO

The role of muscle biopsy in the diagnostic workup of floppy infants is controversial. Muscle sampling is invasive, and often, results are not specific. The rapid expansion of genetic approach has made the muscle histopathology analysis less crucial. This study aims to assess the role and efficacy of muscle histopathology in the diagnostic algorithm of hypotonia in early infancy through a retrospective analysis of 197 infants who underwent muscle biopsy in their first 18 months of life. Data analysis revealed that 92/197 (46.7%) of muscle biopsies were non-specific (80) or normal (12), not allowing a specific diagnosis. In 41/197 (20.8%) cases, biopsy suggested a metabolic or mitochondrial myopathy, while in 23/197 cases (11.7%), we found evidence of muscular dystrophy. In 19/197 cases (9.7%), histopathology characteristics of a congenital myopathy were reported. In 22/197 cases (11.7%), the histopathological study indicated presence of a neurogenic damage. Overall, 46 diagnoses were then achieved by oriented genetic tests. Muscle biopsy results were consistent with genetic results in 90% of cases. Diagnostic algorithms for the diagnosis of a floppy infant are largely missing. Muscle biopsy alone can lead to a diagnosis, help the clinician in the choice of a genetic test, or even modify a diagnosis made previously.

7.
Clin Neuropathol ; 40(6): 310-318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34281632

RESUMO

AIM: Since the immune system plays a role in the pathogenesis of several muscular dystrophies, we aim to characterize several muscular inflammatory features in α- (LGMD R3) and γ-sarcoglycanopathies (LGMD R5). MATERIALS AND METHODS: We explored the expression of major histocompatibility complex class I molecules (MHCI), and we analyzed the composition of the immune infiltrates in muscle biopsies from 10 patients with LGMD R3 and 8 patients with LGMD R5, comparing the results to Duchenne muscular dystrophy patients (DMD). RESULTS: A consistent involvement of the immune response was observed in sarcoglycanopathies, although it was less evident than in DMD. LGMD R3-R5 and DMD shared an abnormal expression of MHCI, and the composition of the muscular immune cell infiltrate was comparable. CONCLUSION: These findings might serve as a rationale to fine-tune a disease-specific immunomodulatory regimen, particularly relevant in view of the rapid development of gene therapy for sarcoglycanopathies.


Assuntos
Distrofias Musculares , Miosite , Sarcoglicanopatias , Biópsia , Humanos , Músculo Esquelético , Sarcoglicanopatias/genética
8.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825102

RESUMO

In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.


Assuntos
Trifosfato de Adenosina/metabolismo , Inflamassomos/metabolismo , Distrofias Musculares/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo , Transdução de Sinais
9.
Acta Myol ; 38(1): 8-12, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31309175

RESUMO

Tripartite motif-containing protein 32 (TRIM32) is a member of the TRIM ubiquitin E3 ligases which ubiquitinates different substrates in muscle including sarcomeric proteins. Mutations in TRIM32 are associated with Limb-Girdle Muscular Dystrophy 2H. In a 66 old woman with disto-proximal myopathy, we identified a novel homozygous mutation of TRIM32 gene c.1781G > A (p. Ser594Asn) localised in the c-terminus NHL domain. Mutations of this domain have been also associated to Sarcotubular Myopathy (STM), a form of distal myopathy with peculiar features in muscle biopsy, now considered in the spectrum of LGMD2H. Muscle biopsy revealed severe abnormalities of the myofibrillar network with core like areas, lobulated fibres, whorled fibres and multiple vacuoles. Desmin and Myotilin stainings also pointed to accumulation as in Myofibrillar Myopathy. This report further confirms that STM and LGMD2H represent the same disorder and suggests to consider TRIM32 mutations in the genetic diagnosis of Sarcotubular Myopathy and Myofibrillar Myopathy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Mutação/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Feminino , Humanos
10.
Am J Pathol ; 189(2): 354-369, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448410

RESUMO

In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.


Assuntos
Trifosfato de Adenosina/imunologia , Distrofia Muscular Animal , Miofibrilas , Sarcoglicanas/deficiência , Linfócitos T Reguladores , Trifosfato de Adenosina/genética , Animais , Cálcio/imunologia , Doença Crônica , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/patologia , Miofibrilas/imunologia , Miofibrilas/patologia , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/imunologia , Sarcoglicanas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
11.
Acta Neuropathol Commun ; 6(1): 27, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642926

RESUMO

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed. Duchenne muscular dystrophy (DMD) alters P2RX7 signaling in both muscle and inflammatory cells and inhibition of this receptor resulted in a significant attenuation of muscle and non-muscle symptoms in DMDmdx mouse model. As P2RX7 is an attractive target in a range of human diseases, specific antagonists have been developed. Yet, these will require lengthy safety testing in the pediatric population of Duchenne muscular dystrophy (DMD) patients. In contrast, Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can act as P2RX7 antagonists and are drugs with an established safety record, including in children. We demonstrate here that AZT (Zidovudine) inhibits P2RX7 functions acting via the same allosteric site as other antagonists. Moreover, short-term AZT treatment at the peak of disease in DMDmdx mice attenuated the phenotype without any detectable side effects. Recovery was evident in the key parameters such as reduced sarcolemma permeability confirmed by lower serum creatine kinase levels and IgG influx into myofibres, decreased inflammatory cell numbers and inflammation markers in leg and heart muscles of treated mice. Moreover, this short-term therapy had some positive impact on muscle strength in vivo and no detrimental effect on mitochondria, which is the main side-effect of Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Given these results, we postulate that AZT could be quickly re-purposed for the treatment of this highly debilitating and lethal disease. This approach is not constrained by causative DMD mutations and may be effective in alleviating both muscle and non-muscle abnormalities.


Assuntos
Antimetabólitos/uso terapêutico , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Receptores Purinérgicos P2X7/metabolismo , Zidovudina/uso terapêutico , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Cálcio/metabolismo , Células Cultivadas , Colágeno Tipo IV/metabolismo , Creatina Quinase/sangue , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Modelos Moleculares , Força Muscular/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/genética , Mioblastos/efeitos dos fármacos
12.
JIMD Rep ; 38: 23-31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28456886

RESUMO

Mutations in the guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) gene encoding a key enzyme of the glycosylation pathway have been described in families with congenital (CMD) and limb girdle (LGMD) muscular dystrophy with reduced alpha-dystroglycan (α-DG) at muscle biopsy.Patients typically display a combined phenotype of muscular dystrophy, brain malformations, and generalized epilepsy. However, a wide spectrum of clinical severity has been described ranging from classical CMD presentation to children with mild, yet progressive LGMD with or without intellectual disability. Cardiac involvement, including a long QT interval and left ventricular dilatation, has also been described in four cases.Two missense mutations in GMPPB gene, one novel and one already reported, have been identified in a 21-year-old man presenting with elevated CK (38,650 UI/L; normal values <150 UI/L) without overt muscle weakness. Major complaints included limb myalgia, exercise intolerance, and several episodes of myoglobinuria consistent with a form of metabolic myopathy. Muscle biopsy showed only minimal alterations, whereas a marked reduction of glycosylated α-DG was evident.This case further expands the phenotypic spectrum of GMPPB mutations and highlights the importance of exhaustive molecular characterization of patients with reduced glycosylation of α-DG at muscle biopsy.

13.
Ann Hum Biol ; 45(1): 34-43, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29216758

RESUMO

BACKGROUND: Archaeological data provide evidence that Italy, during the Iron Age, witnessed the appearance of the first communities with well defined cultural identities. To date, only a few studies report genetic data about these populations and, in particular, the Piceni have never been analysed. AIMS: To provide new data about mitochondrial DNA (mtDNA) variability of an Iron Age Italic population, to understand the contribution of the Piceni in shaping the modern Italian gene pool and to ascertain the kinship between some individuals buried in the same grave within the Novilara necropolis. SUBJECTS AND METHODS: In a first set of 10 individuals from Novilara, we performed deep sequencing of the HVS-I region of the mtDNA, combined with the genotyping of 22 SNPs in the coding region and the analysis of several autosomal markers. RESULTS: The results show a low nucleotide diversity for the inhabitants of Novilara and highlight a genetic affinity of this ancient population with the current inhabitants of central Italy. No family relationship was observed between the individuals analysed here. CONCLUSIONS: This study provides a preliminary characterisation of the mtDNA variability of the Piceni of Novilara, as well as a kinship assessment of two peculiar burials.


Assuntos
DNA Mitocondrial/análise , Variação Genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Arqueologia , DNA Antigo/análise , Feminino , Humanos , Itália , Masculino
14.
Am J Pathol ; 185(12): 3349-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26465071

RESUMO

Infiltration of immune cells and chronic inflammation substantially affect skeletal and cardiac muscle degeneration in Duchenne muscular dystrophy. In the immune system, extracellular adenosine triphosphate (ATP) released by dying cells is sensed as a danger associated molecular pattern through P2 purinergic receptors. Specifically, the P2X7 subtype has a prominent role in regulating immune system physiology and contributes to inflammasome activation also in muscle cells. Here, we show that in vivo blockade of the extracellular ATP/P2X purinergic signaling pathway by periodate-oxidized ATP delayed the progression of the dystrophic phenotype and dampened the local inflammatory response in mdx mice, a spontaneous mouse model of dystrophin deficiency. Reduced infiltration of leukocytes and macrophages and decreased expression of IL-6 were revealed in the muscles of periodate-oxidized ATP-treated mdx mice. Concomitantly, an increase in Foxp3(+) immunosuppressive regulatory T cells was observed and correlated with enhanced myofiber regeneration. Moreover, we detected reduced concentrations of profibrotic cytokines, including transforming growth factor-ß and connective tissue growth factor, in muscles of periodate-oxidized ATP-treated mdx mice. The improvement of inflammatory features was associated with increased strength and reduced necrosis, thus suggesting that pharmacologic purinergic antagonism altering the adaptive immune component in the muscle infiltrates might represent a promising therapeutic approach in Duchenne muscular dystrophy.


Assuntos
Músculo Esquelético/imunologia , Distrofia Muscular de Duchenne/imunologia , Receptores Purinérgicos P2X/fisiologia , Linfócitos T Reguladores/imunologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Animais , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/prevenção & controle , Condicionamento Físico Animal , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA