Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
2.
Diagnostics (Basel) ; 13(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37174959

RESUMO

BACKGROUND: The present mono-institutional report aimed to describe the cognitive and behavioral outcomes of low-grade central nervous system (CNS) tumors in a cohort of children treated exclusively with surgical intervention. METHODS: Medical records from 2000-2020 were retrospectively analyzed. We included 38 children (mean age at first evaluation 8 years and 3 months, 16 females) who had undergone presurgical cognitive-behavioral evaluation and/or at least 6 months follow-up. Exclusion criteria were a history of traumatic brain injury, stroke, cerebral palsy or cancer-predisposing syndromes. RESULTS: The sample presented cognitive abilities and behavioral functioning in the normal range, with weaknesses in verbal working memory and processing speed. The obtained results suggest that cognitive and behavioral functioning is related to pre-treatment variables (younger age at symptoms' onset, glioneuronal histological type, cortical location with preoperative seizures), timing of surgery and seizure control after surgery, and is stable when controlling for a preoperative cognitive and behavioral baseline. Younger age at onset is confirmed as a particular vulnerability in determining cognitive sequelae, and children at older ages or at longer postsurgical follow-up are at higher risk for developing behavioral disturbances. CONCLUSIONS: Timely treatment is an important factor influencing the global outcome and daily functioning of the patients. Preoperative and regular postsurgical cognitive and behavioral assessment, also several years after surgery, should be included in standard clinical practices.

3.
Hum Mutat ; 43(12): 2222-2233, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259739

RESUMO

Trichothiodystrophy (TTD) is a rare hereditary disease whose prominent feature is brittle hair. Additional clinical signs are physical and neurodevelopmental abnormalities and in about half of the cases hypersensitivity to UV radiation. The photosensitive form of TTD (PS-TTD) is most commonly caused by mutations in the ERCC2/XPD gene encoding a subunit of the transcription/DNA repair complex TFIIH. Here we report novel ERCC2/XPD mutations affecting proper protein folding, which generate thermo-labile forms of XPD associated with thermo-sensitive phenotypes characterized by reversible aggravation of TTD clinical signs during episodes of fever. In patient cells, the newly identified XPD variants result in thermo-instability of the whole TFIIH complex and consequent temperature-dependent defects in DNA repair and transcription. Improving the protein folding process by exposing patient cells to low temperature or to the chemical chaperone glycerol allowed rescue of TFIIH thermo-instability and a concomitant recovery of the complex activities. Besides providing a rationale for the peculiar thermo-sensitive clinical features of these new cases, the present findings demonstrate how variations in the cellular concentration of mutated TFIIH impact the cellular functions of the complex and underlie how both quantitative and qualitative TFIIH alterations contribute to TTD clinical features.


Assuntos
Doenças do Cabelo , Dermatopatias , Síndromes de Tricotiodistrofia , Xeroderma Pigmentoso , Humanos , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/complicações , Reparo do DNA , Doenças do Cabelo/genética , Transcrição Gênica , Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
4.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682590

RESUMO

KBG syndrome (KBGS) is a neurodevelopmental disorder caused by the Ankyrin Repeat Domain 11 (ANKRD11) haploinsufficiency. Here, we report the molecular investigations performed on a cohort of 33 individuals with KBGS clinical suspicion. By using a multi-testing genomic approach, including gene sequencing, Chromosome Microarray Analysis (CMA), and RT-qPCR gene expression assay, we searched for pathogenic alterations in ANKRD11. A molecular diagnosis was obtained in 22 out of 33 patients (67%). ANKRD11 sequencing disclosed pathogenic or likely pathogenic variants in 18 out of 33 patients. CMA identified one full and one terminal ANKRD11 pathogenic deletions, and one partial duplication and one intronic microdeletion, with both possibly being pathogenic. The pathogenic effect was established by RT-qPCR, which confirmed ANKRD11 haploinsufficiency only for the three deletions. Moreover, RT-qPCR applied to six molecularly unsolved KBGS patients identified gene downregulation in a clinically typical patient with previous negative tests, and further molecular investigations revealed a cryptic deletion involving the gene promoter. In conclusion, ANKRD11 pathogenic variants could also involve the regulatory regions of the gene. Moreover, the application of a multi-test approach along with the innovative use of RT-qPCR improved the diagnostic yield in KBGS suspected patients.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Anormalidades Múltiplas/genética , Deleção Cromossômica , Fácies , Humanos , Deficiência Intelectual/genética , Fenótipo , Proteínas Repressoras/genética , Anormalidades Dentárias/diagnóstico , Anormalidades Dentárias/genética , Fatores de Transcrição/genética
5.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35146895

RESUMO

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Assuntos
Epilepsia , Doenças do Recém-Nascido , Deficiência Intelectual , Canais de Cátion TRPM , Criança , Deficiências do Desenvolvimento/genética , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Mutação de Sentido Incorreto , Canais de Cátion TRPM/genética , Sequenciamento do Exoma
6.
Am J Med Genet A ; 182(12): 2877-2886, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33043602

RESUMO

Wiedemann-Steiner syndrome (WDSTS) is a rare autosomal dominant condition caused by heterozygous loss of function variants in the KMT2A (MLL) gene, encoding a lysine N-methyltransferase that mediates a histone methylation pattern specific for epigenetic transcriptional activation. WDSTS is characterized by a distinctive facial phenotype, hypertrichosis, short stature, developmental delay, intellectual disability, congenital malformations, and skeletal anomalies. Recently, a few patients have been reported having abnormal skeletal development of the cervical spine. Here we describe 11 such individuals, all with KMT2A de novo loss-of-function variants: 10 showed craniovertebral junction anomalies, while an 11th patient had a cervical abnormality in C7. By evaluating clinical and diagnostic imaging data we characterized these anomalies, which consist primarily of fused cervical vertebrae, C1 and C2 abnormalities, small foramen magnum and Chiari malformation type I. Craniovertebral anomalies in WDSTS patients have been largely disregarded so far, but the increasing number of reports suggests that they may be an intrinsic feature of this syndrome. Specific investigation strategies should be considered for early identification and prevention of craniovertebral junction complications in WDSTS patients.


Assuntos
Anormalidades Múltiplas/patologia , Vértebras Cervicais/patologia , Contratura/patologia , Transtornos do Crescimento/patologia , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/patologia , Microcefalia/patologia , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Vértebras Cervicais/metabolismo , Criança , Pré-Escolar , Contratura/genética , Fácies , Feminino , Transtornos do Crescimento/genética , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Fenótipo , Síndrome , Adulto Jovem
8.
Cancers (Basel) ; 11(12)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766501

RESUMO

The occurrence of optic pathway gliomas (OPGs) in children with neurofibromatosis type 1 (NF1) still raises many questions regarding screening and surveillance because of the lack of robust prognostic factors. Recent studies of an overall cohort of 381 patients have suggested that the genotype may be the main determinant of the development of OPG, with the risk being higher in patients harbouring NF1 mutations in the 5' tertile and the cysteine/serine-rich domain. In an attempt to confirm this hypothesis, we used strict criteria to select a large independent cohort of 309 NF1 patients with defined constitutional NF1 mutations and appropriate brain images (255 directly enrolled and 54 as a result of a literature search). One hundred and thirty-two patients had OPG and 177 did not. The association of the position (tertiles and functional domains) and type of NF1 mutation with the development of OPG was analysed using the χ2 test and Fisher's exact probability test; odds ratios (ORs) with 95% confidence intervals were calculated, and Bonferroni's correction for multiple comparisons was applied; multiple logistic regression was also used to study genotype-phenotype associations further. Our findings show no significant correlation between the site/type of NF1 mutation and the risk of OPG, and thus do not support the hypothesis that certain constitutional mutations provide prognostic information in this regard. In addition, we combined our cohort with a previously described cohort of 381 patients for a total of 690 patients and statistically re-analysed the results. The re-analysis confirmed that there were no correlations between the site (tertile and domain) and the risk of OPG, thus further strengthening our conclusions.

10.
Neuropediatrics ; 50(5): 334-335, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31141827

RESUMO

Spinal Tuberculosis in children is uncommon, even more so in cases of involvement of posterior vertebral elements, and its diagnosis is often delayed. Here we report the case of a young female presenting neuroradiological features and clinical symptoms suspicious for malignant tumor. Histological examination of biopsy specimen evidenced a Pott's disease. We highlight the importance of suspecting this disorder in children with both aspecific systemic and neurological symptoms, in order to reach a timely diagnosis for appropriate and targeted intervention, avoiding the risk of overtreatment and malpractice claims.


Assuntos
Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/patologia , Tuberculose da Coluna Vertebral/diagnóstico por imagem , Tuberculose da Coluna Vertebral/patologia , Criança , Erros de Diagnóstico , Feminino , Humanos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia
11.
Eur J Med Genet ; 62(12): 103596, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30528446

RESUMO

OBJECTIVE OF THE STUDY: To give a full overview of the clinical presentation of PTEN mutations in pediatric patients and to propose a pediatric follow-up protocol. METHODS: Recruitment of 16 PTEN mutated children (age 6 months-11 years) from two pediatric centers in Milan (Italy) between 2006 and 2017. All the patients underwent clinical and neurologic evaluations, cognitive and behavioral tests, and brain MRI; they are currently following an oncologic follow-up. RESULTS: Extreme macrocephaly is present in all the patients (69% HC above +4 SD). Neuropsychiatric issues have high prevalence, with 56% of patients showing developmental delay and 25% showing autism spectrum disorder. Brain MRI reveals in 75% of the patients at least one of the following: enlarged perivascular spaces, white matter anomalies, and/or downward displacement of the cerebellar tonsils through the foramen magnum, resulting in Chiari I malformation in two patients. Vascular malformations have a prevalence of 19%, with further evidence that complex cardiovascular malformations may be related to PTEN mutations; 31% of patients present hamartomas. None of our patients have so far experienced any oncologic complication. CONCLUSIONS: We suggest to screen for PTEN mutations all children presenting macrocephaly and one of the following: neurodevelopmental issues, one of the three major brain MRI anomalies, cutaneous lesions, vascular malformations, family history positive for PTEN related malignancies; or also with macrocephaly alone when exceeding +3 SD. Basing on our cohort results and further recent studies on the condition, we recommend a follow-up protocol that includes annual clinical and dermatological examination, thyroid and abdominal US, and Fecal Occult Blood test plus neurodevelopmental evaluation, heart US (to exclude congenital heart malformations), and brain MRI (to exclude Chiari I malformation) at diagnosis.


Assuntos
Transtorno do Espectro Autista/genética , Anormalidades Cardiovasculares/genética , Megalencefalia/genética , Mutação , PTEN Fosfo-Hidrolase/genética , Fenótipo , Transtorno do Espectro Autista/patologia , Anormalidades Cardiovasculares/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Megalencefalia/patologia , Síndrome
12.
Int J Mol Sci ; 19(11)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463371

RESUMO

Moyamoya angiopathy (MA) is a cerebrovascular disease determining a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and their proximal branches and the compensatory development of abnormal "moyamoya" vessels. MA occurs as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes) including several heritable conditions such as Down syndrome, neurofibromatosis type 1 and other genomic defects. Although the mechanism that links MA to these genetic syndromes is still unclear, it is believed that the involved genes may contribute to the disease susceptibility. Herein, we describe the case of a 43 years old woman with bilateral MA and peculiar facial characteristics, having a 484-kb microduplication of the chromosomal region 15q13.3 and a previously unreported 786 kb microdeletion in 18q21.32. This patient may have a newly-recognized genetic syndrome associated with MA. Although the relationship between these genetic variants and MA is unclear, our report would contribute to widening the genetic scenario of MA, in which not only genic mutation, but also genome unbalances are possible candidate susceptibility factors.


Assuntos
Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 18/genética , Doença de Moyamoya/genética , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Doença de Moyamoya/diagnóstico por imagem
13.
Hum Mutat ; 39(12): 2060-2071, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30252181

RESUMO

Mitochondrial dynamics and quality control are crucial for neuronal survival and their perturbation is a major cause of neurodegeneration. m-AAA complex is an ATP-dependent metalloprotease located in the inner mitochondrial membrane and involved in protein quality control. Mutations in the m-AAA subunits AFG3L2 and paraplegin are associated with autosomal dominant spinocerebellar ataxia (SCA28) and autosomal recessive hereditary spastic paraplegia (SPG7), respectively. We report a novel m-AAA-associated phenotype characterized by early-onset optic atrophy with spastic ataxia and L-dopa-responsive parkinsonism. The proband carried a de novo AFG3L2 heterozygous mutation (p.R468C) along with a heterozygous maternally inherited intragenic deletion of SPG7. Functional analysis in yeast demonstrated the pathogenic role of AFG3L2 p.R468C mutation shedding light on its pathogenic mechanism. Analysis of patient's fibroblasts showed an abnormal processing pattern of OPA1, a dynamin-related protein essential for mitochondrial fusion and responsible for most cases of hereditary optic atrophy. Consistently, assessment of mitochondrial morphology revealed a severe fragmentation of the mitochondrial network, not observed in SCA28 and SPG7 patients' cells. This case suggests that coincidental mutations in both components of the mitochondrial m-AAA protease may result in a complex phenotype and reveals a crucial role for OPA1 processing in the pathogenesis of neurodegenerative disease caused by m-AAA defects.


Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , GTP Fosfo-Hidrolases/metabolismo , Metaloendopeptidases/genética , Mitocôndrias/patologia , Mutação , Atrofia Óptica/patologia , Transtornos Parkinsonianos/patologia , Adulto , Linhagem Celular , Feminino , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Linhagem , Leveduras/genética
14.
Brain ; 140(10): 2610-2622, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969385

RESUMO

Mutations of genes within the phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway are well known causes of brain overgrowth (megalencephaly) as well as segmental cortical dysplasia (such as hemimegalencephaly, focal cortical dysplasia and polymicrogyria). Mutations of the AKT3 gene have been reported in a few individuals with brain malformations, to date. Therefore, our understanding regarding the clinical and molecular spectrum associated with mutations of this critical gene is limited, with no clear genotype-phenotype correlations. We sought to further delineate this spectrum, study levels of mosaicism and identify genotype-phenotype correlations of AKT3-related disorders. We performed targeted sequencing of AKT3 on individuals with these phenotypes by molecular inversion probes and/or Sanger sequencing to determine the type and level of mosaicism of mutations. We analysed all clinical and brain imaging data of mutation-positive individuals including neuropathological analysis in one instance. We performed ex vivo kinase assays on AKT3 engineered with the patient mutations and examined the phospholipid binding profile of pleckstrin homology domain localizing mutations. We identified 14 new individuals with AKT3 mutations with several phenotypes dependent on the type of mutation and level of mosaicism. Our comprehensive clinical characterization, and review of all previously published patients, broadly segregates individuals with AKT3 mutations into two groups: patients with highly asymmetric cortical dysplasia caused by the common p.E17K mutation, and patients with constitutional AKT3 mutations exhibiting more variable phenotypes including bilateral cortical malformations, polymicrogyria, periventricular nodular heterotopia and diffuse megalencephaly without cortical dysplasia. All mutations increased kinase activity, and pleckstrin homology domain mutants exhibited enhanced phospholipid binding. Overall, our study shows that activating mutations of the critical AKT3 gene are associated with a wide spectrum of brain involvement ranging from focal or segmental brain malformations (such as hemimegalencephaly and polymicrogyria) predominantly due to mosaic AKT3 mutations, to diffuse bilateral cortical malformations, megalencephaly and heterotopia due to constitutional AKT3 mutations. We also provide the first detailed neuropathological examination of a child with extreme megalencephaly due to a constitutional AKT3 mutation. This child has one of the largest documented paediatric brain sizes, to our knowledge. Finally, our data show that constitutional AKT3 mutations are associated with megalencephaly, with or without autism, similar to PTEN-related disorders. Recognition of this broad clinical and molecular spectrum of AKT3 mutations is important for providing early diagnosis and appropriate management of affected individuals, and will facilitate targeted design of future human clinical trials using PI3K-AKT pathway inhibitors.


Assuntos
Deficiências do Desenvolvimento/genética , Megalencefalia/genética , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Encéfalo/diagnóstico por imagem , Criança , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Imunoprecipitação , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/patologia , Mutagênese Sítio-Dirigida/métodos , Fosfatidilinositóis/metabolismo , Transfecção
15.
Am J Med Genet A ; 170A(1): 148-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26437767

RESUMO

Seizures are rarely reported in Williams-Beuren syndrome (WBS)--a contiguous-gene-deletion disorder caused by a 7q11.23 heterozygous deletion of 1.5-1.8 Mb--and no previous study evaluated electro-clinical features of epilepsy in this syndrome. Furthermore, it has been hypothesized that atypical deletion (e.g., larger than 1.8 Mb) may be responsible for a more pronounced neurological phenotypes, especially including seizures. Our objectives are to describe the electro-clinical features in WBS and to correlate the epileptic phenotype with deletion of the 7q11.23 critical region. We evaluate the electro-clinical features in one case of distal 7q11.23 deletion syndrome and in eight epileptic WBS (eWBS) patients. Additionally, we compare the deletion size-and deleted genes-of four epileptic WBS (eWBS) with that of four non-epileptic WBS (neWBS) patients. Infantile spasms, focal (e.g., motor and dyscognitive with autonomic features) and generalized (e.g., tonic-clonic, tonic, clonic, myoclonic) seizures were encountered. Drug-resistance was observed in one patient. Neuroimaging discovered one case of focal cortical dysplasia, one case of fronto-temporal cortical atrophy and one case of periventricular nodular heterotopia. Comparison of deletion size between eWBS and neWBS patients did not reveal candidate genes potentially underlying epilepsy. This is the largest series describing electro-clinical features of epilepsy in WBS. In WBS, epilepsy should be considered both in case of typical and atypical deletions, which do not involve HIP1, YWHAG or MAGI2.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 7/genética , Epilepsia/etiologia , Síndrome de Williams/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Epilepsia/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Síndrome de Williams/complicações , Síndrome de Williams/patologia , Adulto Jovem
16.
Hum Mutat ; 31(5): E1319-31, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20232449

RESUMO

Human ciliopathies are hereditary conditions caused by defects of proteins expressed at the primary cilium. Among ciliopathies, Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS) and nephronophthisis (NPH) present clinical and genetic overlap, being allelic at several loci. One of the most interesting gene is TMEM67, encoding the transmembrane protein meckelin. We performed mutation analysis of TMEM67 in 341 probands, including 265 JSRD representative of all clinical subgroups and 76 MKS fetuses. We identified 33 distinct mutations, of which 20 were novel, in 8/10 (80%) JS with liver involvement (COACH phenotype) and 12/76 (16%) MKS fetuses. No mutations were found in other JSRD subtypes, confirming the strong association between TMEM67 mutations and liver involvement. Literature review of all published TMEM67 mutated cases was performed to delineate genotype-phenotype correlates. In particular, comparison of the types of mutations and their distribution along the gene in lethal versus non lethal phenotypes showed in MKS patients a significant enrichment of missense mutations falling in TMEM67 exons 8 to 15, especially when in combination with a truncating mutation. These exons encode for a region of unknown function in the extracellular domain of meckelin.


Assuntos
Anormalidades Múltiplas/genética , Doenças Renais Císticas/genética , Cirrose Hepática/genética , Proteínas de Membrana/genética , Mutação/genética , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Doenças Renais Císticas/patologia , Cirrose Hepática/patologia , Fenótipo , Gravidez , Diagnóstico Pré-Natal
17.
Brain Dev ; 32(7): 550-5, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19751967

RESUMO

BACKGROUND: Bilateral perisylvian polymicrogyria (BPP) is a well-recognized malformation of cortical development commonly associated with epilepsy, cognitive impairment, and oromotor apraxia. Reports have suggested the association of BPP with arthrogryposis multiplex congenita. We sought to investigate the clinical, electrophysiological, and neuroradiological features of this combined syndrome to determine if there are unique features that distinguish BPP with arthrogryposis from BPP alone. METHODS: Cases of BPP with congenital arthrogryposis were identified from a large research database of individuals with polymicrogyria. Clinical features (including oromotor function, seizures, and joint contractures), MR brain imaging, and results of neuromuscular testing were reviewed. RESULTS: Ten cases of BPP with congenital arthrogryposis were identified. Most cases had some degree of oromotor apraxia. Only a few had seizures, but a majority of cases were still young children. Electrophysiological studies provided evidence for lower motor neuron or peripheral nervous system involvement. On brain imaging, bilateral polymicrogyria (PMG) centered along the Sylvian fissures was seen, with variable extension frontally or parietally; no other cortical malformations were present. We did not identify obvious neuroimaging features that distinguish this syndrome from that of BPP without arthrogryposis. CONCLUSIONS: The clinical and neuroimaging features of the syndrome of BPP with congenital arthrogryposis appear similar to those seen in cases of isolated BPP without joint contractures, but electrophysiological studies often demonstrate coexistent lower motor neuron or peripheral nervous system pathology. These findings suggest that BPP with arthrogryposis may have a genetic etiology with effects at two levels of the neuraxis.


Assuntos
Artrogripose , Encéfalo , Malformações do Desenvolvimento Cortical , Adolescente , Artrogripose/genética , Artrogripose/patologia , Artrogripose/fisiopatologia , Encéfalo/anatomia & histologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Síndrome , Adulto Jovem
18.
Dev Med Child Neurol ; 50(8): 631-4, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18754903

RESUMO

Aicardi-Goutières syndrome (AGS) is a genetically determined encephalopathy usually inherited as an autosomal recessive trait. The syndrome can be caused by mutations in the AGS1 gene encoding the exonuclease TREX1, or in any of the AGS2, AGS3, or AGS4 genes that encode the three subunits of the human ribonuclease H2 (RNaseH2) complex. Typically, AGS has an early onset, usually manifesting by the age of 4 months. We describe a female infant in whom the onset of the neurological symptoms of AGS occurred after the age of 12 months, and her younger brother who was identified to be affected by AGS at the age of 8 months on the basis of the presence of non-neurological features alone. This paper is important in providing a detailed description of the late-onset presentation of AGS in patients with proven pathogenic mutations and highlights the occurrence of both chilblains and abnormal neuroimaging many months before the onset of neurological features. Our paper also considers the possible value of immunomodulatory therapy in AGS.


Assuntos
Encefalopatias/genética , Encéfalo/patologia , Calcinose/genética , Linfocitose/genética , Microcefalia/genética , Proteínas/genética , Encefalopatias/complicações , Calcinose/complicações , Exodesoxirribonucleases/genética , Feminino , Genótipo , Humanos , Lactente , Interferon-alfa/líquido cefalorraquidiano , Linfocitose/complicações , Imageamento por Ressonância Magnética , Microcefalia/complicações , Microcefalia/patologia , Linhagem , Fosfoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA