Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(4): e14444, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564168

RESUMO

Assisted reproductive techniques are routinely used in livestock species to increase and enhance productivity. Ovarian hyperstimulation is a process that currently relies on administering pituitary-derived follicle-stimulating hormone (FSH) or equine chorionic gonadotropin in combination with other hormones to promote the maturation of multiple follicles and thereby achieve superovulation. The use of partially purified preparations of FSH extracted from natural sources is associated with suboptimal and variable results. Recombinant FSH (rFSH) has been produced in a variety of heterologous organisms. However, attaining a bioactive rFSH of high quality and at low cost for use in livestock remains challenging. Here we report the production and characterization of a single chain bovine rFSH consisting of the ß- and α-subunit fused by a polypeptide linker (scbFSH) using Leishmania tarentolae as heterologous expression system. This unicellular eukaryote is non-pathogenic to mammals, can be grown in bioreactors using simple and inexpensive semisynthetic media at 26°C and does not require CO2 or bovine serum supplementation. Stable cell lines expressing scbFSH in an inducible fashion were generated and characterized for their productivity. Different culture conditions and purification procedures were evaluated, and the recombinant product was biochemically and biologically characterized, including bioassays in an animal model. The results demonstrate that L. tarentolae is a suitable host for producing a homogeneous, glycosylated and biologically active form of scbFSH with a reasonable yield.


Assuntos
Leishmania , Feminino , Animais , Cavalos , Leishmania/genética , Bioensaio , Reatores Biológicos , Linhagem Celular , Hormônio Foliculoestimulante , Mamíferos
2.
Nat Microbiol ; 7(4): 524-529, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365787

RESUMO

SARS-CoV-2 variant Lambda was dominant in several South American countries, including Chile. To ascertain the efficacy of local vaccination efforts, we used pseudotyped viruses to characterize the neutralization capacity of antibodies elicited by CoronaVac (n = 53) and BNT162b2 (n = 56) in healthcare workers from Clínica Santa María and the Faculty of Medicine at Universidad de Chile, as well as in convalescent plasma from individuals infected during the first wave visiting the Hospital Clínico at Pontificia Universidad Católica (n = 30). We observed that BNT162b2 elicits higher neutralizing antibody titres than CoronaVac, with differences ranging from 7.4-fold for the ancestral spike (Wuhan-Hu-1) to 8.2-fold for the Lambda spike and 13-fold for the Delta spike. Compared with the ancestral virus, neutralization against D614G, Alpha, Gamma, Lambda and Delta variants was reduced by between 0.93- and 4.22-fold for CoronaVac, 1.04- and 2.38-fold for BNT162b2, and 1.26- and 2.67-fold for convalescent plasma. Comparative analyses among the spike structures of the different variants suggest that mutations in the spike protein from the Lambda variant, including the 246-252 deletion in an antigenic supersite at the N-terminal domain loop and L452Q/F490S within the receptor-binding domain, may account for immune escape. Interestingly, analyses using pseudotyped and whole viruses showed increased entry rates into HEK293T-ACE2 cells, but reduced replication rates in Vero-E6 cells for the Lambda variant when compared with the Alpha, Gamma and Delta variants. Our data show that inactivated virus and messenger RNA vaccines elicit different levels of neutralizing antibodies with different potency to neutralize SARS-CoV-2 variants, including the variant of interest Lambda.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes/metabolismo , Vacina BNT162 , COVID-19/terapia , Chile , Células HEK293 , Humanos , Imunização Passiva , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/metabolismo , Soroterapia para COVID-19
3.
Methods Mol Biol ; 2483: 255-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286681

RESUMO

Genetically encoded FRET sensors for revealing local concentrations of second messengers in living cells have enormously contributed to our understanding of physiological and pathological processes. However, the development of sensors remains an intricate process. Using simulation techniques, we recently introduced a new architecture to measure intracellular concentrations of cAMP named CUTie, which works as a FRET tag for arbitrary targeting domains. Although our method showed quasi-quantitative predictive power in the design of cAMP and cGMP sensors, it remains intricate and requires specific computational skills. Here, we provide a simplified computer-aided protocol to design tailor-made CUTie sensors based on arbitrary cyclic nucleotide-binding domains. As a proof of concept, we applied this method to construct a new CUTie sensor with a significantly higher cAMP sensitivity (EC50 = 460 nM).This simple protocol, which integrates our previous experience, only requires free web servers and can be straightforwardly used to create cAMP sensors adapted to the physicochemical characteristics of known cyclic nucleotide-binding domains.


Assuntos
AMP Cíclico , Pedestres , AMP Cíclico/química , GMP Cíclico , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Sistemas do Segundo Mensageiro
4.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944500

RESUMO

Fabry disease is an X-linked multisystemic disorder caused by the impairment of lysosomal α-Galactosidase A, which leads to the progressive accumulation of glycosphingolipids and to defective lysosomal metabolism. Currently, Fabry disease is treated by enzyme replacement therapy or the orally administrated pharmacological chaperone Migalastat. Both therapeutic strategies present limitations, since enzyme replacement therapy has shown low half-life and bioavailability, while Migalastat is only approved for patients with specific mutations. The aim of this work was to assess the efficacy of PBX galactose analogues to stabilize α-Galactosidase A and therefore evaluate their potential use in Fabry patients with mutations that are not amenable to the treatment with Migalastat. We demonstrated that PBX compounds are safe and effective concerning stabilization of α-Galactosidase A in relevant cellular models of the disease, as assessed by enzymatic activity measurements, molecular modelling, and cell viability assays. This experimental evidence suggests that PBX compounds are promising candidates for the treatment of Fabry disease caused by mutations which affect the folding of α-Galactosidase A, even for GLA variants that are not amenable to the treatment with Migalastat.


Assuntos
Doença de Fabry/metabolismo , Galactose/análogos & derivados , Leucócitos Mononucleares/efeitos dos fármacos , Mutação , alfa-Galactosidase/farmacologia , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Estabilidade de Medicamentos , Terapia de Reposição de Enzimas , Doença de Fabry/genética , Doença de Fabry/terapia , Galactose/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Leucócitos Mononucleares/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , alfa-Galactosidase/química , alfa-Galactosidase/genética
5.
Front Mol Biosci ; 8: 629773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33778003

RESUMO

The detection of small molecules in living cells using genetically encoded FRET sensors has revolutionized our understanding of signaling pathways at the sub-cellular level. However, engineering fluorescent proteins and specific binding domains to create new sensors remains challenging because of the difficulties associated with the large size of the polypeptides involved, and their intrinsically huge conformational variability. Indeed, FRET sensors' design still relies on vague structural notions, and trial and error combinations of linkers and protein modules. We recently designed a FRET sensor for the second messenger cAMP named CUTie (Cyclic nucleotide Universal Tag for imaging experiments), which granted sub-micrometer resolution in living cells. Here we apply a combination of sequence/structure analysis to produce a new-generation FRET sensor for the second messenger cGMP based on Protein kinase G I (PKGI), which we named CUTie2. Coarse-grained molecular dynamics simulations achieved an exhaustive sampling of the relevant spatio-temporal coordinates providing a quasi-quantitative prediction of the FRET efficiency, as confirmed by in vitro experiments. Moreover, biochemical characterization showed that the cGMP binding module maintains virtually the same affinity and selectivity for its ligand thant the full-length protein. The computational approach proposed here is easily generalizable to other allosteric protein modules, providing a cost effective-strategy for the custom design of FRET sensors.

6.
J Chem Theory Comput ; 17(2): 599-604, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33411518

RESUMO

The challenges posed by intrinsically disordered proteins (IDPs) to atomistic and coarse-grained (CG) simulations are boosting efforts to develop and reparametrize current force fields. An assessment of the dynamical behavior of IDPs' and unstructured peptides with the CG SIRAH force field suggests that the current version achieves a fair description of IDPs' conformational flexibility. Moreover, we found a remarkable capability to capture the effect of point mutations in loosely structured peptides.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Modelos Químicos , Peptídeos/química , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Conformação Proteica
7.
J Enzyme Inhib Med Chem ; 35(1): 1345-1358, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32588679

RESUMO

Trypanothione synthetase (TryS) produces N1,N8-bis(glutathionyl)spermidine (or trypanothione) at the expense of ATP. Trypanothione is a metabolite unique and essential for survival and drug-resistance of trypanosomatid parasites. In this study, we report the mechanistic and biological characterisation of optimised N5-substituted paullone analogues with anti-TryS activity. Several of the new derivatives retained submicromolar IC50 against leishmanial TryS. The binding mode to TryS of the most potent paullones has been revealed by means of kinetic, biophysical and molecular modelling approaches. A subset of analogues showed an improved potency (EC50 0.5-10 µM) and selectivity (20-35) against the clinically relevant stage of Leishmania braziliensis (mucocutaneous leishmaniasis) and L. infantum (visceral leishmaniasis). For a selected derivative, the mode of action involved intracellular depletion of trypanothione. Our findings shed light on the molecular interaction of TryS with rationally designed inhibitors and disclose a new set of compounds with on-target activity against different Leishmania species.


Assuntos
Benzazepinas/química , Glutationa/análogos & derivados , Leishmania/metabolismo , Espermidina/análogos & derivados , Animais , Glutationa/biossíntese , Espermidina/biossíntese
8.
FEBS J ; 287(10): 2134-2149, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31659864

RESUMO

Celiac disease (CeD) is a highly prevalent chronic immune-mediated enteropathy developed in genetically predisposed individuals after ingestion of a group of wheat proteins (called gliadins and glutenins). The 13mer α-gliadin peptide, p31-43, induces proinflammatory responses, observed by in vitro assays and animal models, that may contribute to innate immune mechanisms of CeD pathogenesis. Since a cellular receptor for p31-43 has not been identified, this raises the question of whether this peptide could mediate different biological effects. In this work, we aimed to characterize the p31-43 secondary structure by different biophysical and in silico techniques. By dynamic light scattering and using an oligomer/fibril-sensitive fluorescent probe, we showed the presence of oligomers of this peptide in solution. Furthermore, atomic force microscopy analysis showed p31-43 oligomers with different height distribution. Also, peptide concentration had a very strong influence on peptide self-organization process. Oligomers gradually increased their size at lower concentration. Whereas, at higher ones, oligomers increased their complexity, forming branched structures. By CD, we observed that p31-43 self-organized in a polyproline II conformation in equilibrium with ß-sheets-like structures, whose pH remained stable in the range of 3-8. In addition, these findings were supported by molecular dynamics simulation. The formation of p31-43 nanostructures with increased ß-sheet structure may help to explain the molecular etiopathogenesis in the induction of proinflammatory effects and subsequent damage at the intestinal mucosa in CeD.


Assuntos
Doença Celíaca/tratamento farmacológico , Gliadina/farmacologia , Imunidade Inata/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Células CACO-2 , Doença Celíaca/genética , Doença Celíaca/imunologia , Doença Celíaca/patologia , Gliadina/genética , Gliadina/imunologia , Gliadina/ultraestrutura , Humanos , Imunidade Inata/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Microscopia de Força Atômica , Conformação Molecular/efeitos dos fármacos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/ultraestrutura , Peptídeos/química , Peptídeos/imunologia , Peptídeos/farmacologia , Conformação Proteica em Folha beta , Soluções/química , Água/química
9.
Biochem Soc Trans ; 47(5): 1383-1392, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31670375

RESUMO

3'-5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that modulates multiple cellular functions. It is now well established that cAMP can mediate a plethora of functional effects via a complex system of local regulatory mechanisms that result in compartmentalized signalling. The use of fluorescent probes to monitor cAMP in intact, living cells have been instrumental in furthering our appreciation of this ancestral and ubiquitous pathway and unexpected details of the nano-architecture of the cAMP signalling network are starting to emerge. Recent evidence shows that sympathetic control of cardiac contraction and relaxation is achieved via generation of multiple, distinct pools of cAMP that lead to differential phosphorylation of target proteins localized only tens of nanometres apart. The specific local control at these nanodomains is enabled by a distinct signalosome where effectors, targets, and regulators of the cAMP signal are clustered. In this review, we focus on recent advances using targeted fluorescent reporters for cAMP and how they have contributed to our current understanding of nanodomain cAMP signalling in the heart. We briefly discuss how this information can be exploited to design novel therapies and we highlight some of the questions that remain unanswered.


Assuntos
AMP Cíclico/metabolismo , Miocárdio/metabolismo , Animais , Transferência Ressonante de Energia de Fluorescência , Humanos , Fosforilação , Sistemas do Segundo Mensageiro , Transdução de Sinais
10.
Free Radic Biol Med ; 134: 545-554, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735840

RESUMO

Maintenance of intracellular redox homeostasis is critical for cell survival, proliferation, differentiation, and signaling. In this regard, major changes in the intracellular redox milieu may lead to cell death whereas subtle increases in the level of certain oxidizing species may act as signals that regulate a plethora of cellular processes. Redox-sensitive variants of green fluorescent proteins (roGFP2 and rxYFP) were developed and proved useful to monitor intracellular redox changes in a non-invasive and online manner. With the aim to extend the spectral range of the fluorescent redox biosensors, we here describe the generation, biochemical characterization and biological validation of a new redox reporter based on the red-shifted mRuby2 protein (rxmRuby2). Spectrofluorimetric analysis performed with the recombinant biosensor shows a reversible redox response produced by two redox-active cysteine residues predicted by molecular modeling. rxmRuby2 is highly selective for the couple glutathione/glutathione disulfide in the presence of the oxidoreductase glutaredoxin. The estimated redox potential of rxmRuby2 (E° -265 ±â€¯22 mV) makes it suitable for its use in reducing subcellular compartments. Titration assays demonstrated the capacity of rxmRuby2 to monitor redox changes within a physiological pH range. rxmRuby2 responded sensitively and reversibly to different redox stimuli applied to HeLa and HEK293 cells expressing transiently and/or stable the biosensor. Fusing rxmRuby2 to the Clover fluorescent protein allowed normalization of the redox signal to the expression level of the reporter protein and/or to other factors that may affect fluorescence. The new red-shifted redox biosensor show promises for deep-tissue and in vivo imaging applications.


Assuntos
Técnicas Biossensoriais/métodos , Fluorescência , Glutationa/metabolismo , Proteínas Luminescentes/metabolismo , Bioensaio , Células HEK293 , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Oxirredução
11.
Nucleic Acids Res ; 46(17): 9081-9093, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29893896

RESUMO

We have previously shown that 5' halves from tRNAGlyGCC and tRNAGluCUC are the most enriched small RNAs in the extracellular space of human cell lines, and especially in the non-vesicular fraction. Extracellular RNAs are believed to require protection by either encapsulation in vesicles or ribonucleoprotein complex formation. However, deproteinization of non-vesicular tRNA halves does not affect their retention in size-exclusion chromatography. Thus, we considered alternative explanations for their extracellular stability. In-silico analysis of the sequence of these tRNA-derived fragments showed that tRNAGly 5' halves can form homodimers or heterodimers with tRNAGlu 5' halves. This capacity is virtually unique to glycine tRNAs. By analyzing synthetic oligonucleotides by size exclusion chromatography, we provide evidence that dimerization is possible in vitro. tRNA halves with single point substitutions preventing dimerization are degraded faster both in controlled nuclease digestion assays and after transfection in cells, showing that dimerization can stabilize tRNA halves against the action of cellular nucleases. Finally, we give evidence supporting dimerization of endogenous tRNAGlyGCC 5' halves inside cells. Considering recent reports have shown that 5' tRNA halves from Ala and Cys can form tetramers, our results highlight RNA intermolecular structures as a new layer of complexity in the biology of tRNA-derived fragments.


Assuntos
Dimerização , Estabilidade de RNA , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Glicina/metabolismo , Ribonucleases/metabolismo , Região 5'-Flanqueadora , Sequência de Bases , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Humanos , Células MCF-7 , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Glicina/química
12.
Nat Commun ; 8: 15031, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425435

RESUMO

Compartmentalized cAMP/PKA signalling is now recognized as important for physiology and pathophysiology, yet a detailed understanding of the properties, regulation and function of local cAMP/PKA signals is lacking. Here we present a fluorescence resonance energy transfer (FRET)-based sensor, CUTie, which detects compartmentalized cAMP with unprecedented accuracy. CUTie, targeted to specific multiprotein complexes at discrete plasmalemmal, sarcoplasmic reticular and myofilament sites, reveals differential kinetics and amplitudes of localized cAMP signals. This nanoscopic heterogeneity of cAMP signals is necessary to optimize cardiac contractility upon adrenergic activation. At low adrenergic levels, and those mimicking heart failure, differential local cAMP responses are exacerbated, with near abolition of cAMP signalling at certain locations. This work provides tools and fundamental mechanistic insights into subcellular adrenergic signalling in normal and pathological cardiac function.


Assuntos
Técnicas Biossensoriais/métodos , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Ratos Sprague-Dawley , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Homologia de Sequência de Aminoácidos
13.
Glycobiology ; 27(2): 140-153, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913570

RESUMO

Polypeptide GalNAc-transferases (GalNAc-Ts) constitute a family of 20 human glycosyltransferases (comprising 9 subfamilies), which initiate mucin-type O-glycosylation. The O-glycoproteome is thought to be differentially regulated via the different substrate specificities and expression patterns of each GalNAc-T isoforms. Here, we present a comprehensive in vitro analysis of the peptide substrate specificity of GalNAc-T13, showing that it essentially overlaps with the ubiquitous expressed GalNAc-T1 isoform found in the same subfamily as T13. We have also identified and partially characterized nine splice variants of GalNAc-T13, which add further complexity to the GalNAc-T family. Two variants with changes in their lectin domains were characterized by in vitro glycosylation assays, and one (Δ39Ex9) was inactive while the second one (Ex10b) had essentially unaltered activity. We used reverse transcription-polymerase chain reaction analysis of human neuroblastoma cell lines, normal brain and a small panel of neuroblastoma tumors to demonstrate that several splice variants (Ex10b, ΔEx9, ΔEx2-7 and ΔEx6/8-39bpEx9) were highly expressed in tumor cell lines compared with normal brain, although the functional implications remain to be unveiled. In summary, the GalNAc-T13 isoform is predicted to function similarly to GalNAc-T1 against peptide substrates in vivo, in contrast to a prior report, but is unique by being selectively expressed in the brain.


Assuntos
Glicopeptídeos/genética , N-Acetilgalactosaminiltransferases/genética , Peptídeos/genética , Isoformas de Proteínas/genética , Sequência de Aminoácidos , Encéfalo/metabolismo , Regulação da Expressão Gênica , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Lectinas/genética , Lectinas/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Especificidade por Substrato , Polipeptídeo N-Acetilgalactosaminiltransferase
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 165-173, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27632770

RESUMO

The plasma membrane Ca2+ ATPases (PMCA pumps) have a long, cytosolic C-terminal regulatory region where a calmodulin-binding domain (CaM-BD) is located. Under basal conditions (low Ca2+), the C-terminal tail of the pump interacts with autoinhibitory sites proximal to the active center of the enzyme. In activating conditions (i.e., high Ca2+), Ca2+-bound CaM displaces the C-terminal tail from the autoinhibitory sites, restoring activity. We have recently identified a G1107D replacement within the CaM-BD of isoform 3 of the PMCA pump in a family affected by X-linked congenital cerebellar ataxia. Here, we investigate the effects of the G1107D replacement on the interplay of the mutated CaM-BD with both CaM and the pump core, by combining computational, biochemical and functional approaches. We provide evidence that the affinity of the isolated mutated CaM-BD for CaM is significantly reduced with respect to the wild type (wt) counterpart, and that the ability of CaM to activate the pump in vitro is thus decreased. Multiscale simulations support the conclusions on the detrimental effect of the mutation, indicating reduced stability of the CaM binding. We further show that the G1107D replacement impairs the autoinhibition mechanism of the PMCA3 pump as well, as the introduction of a negative charge perturbs the contacts between the CaM-BD and the pump core. Thus, the mutation affects both the ability of the pump to optimally transport Ca2+ in the activated state, and the autoinhibition mechanism in its resting state.


Assuntos
Ataxia/genética , Calmodulina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Mutação Puntual , Ataxia/metabolismo , Sinalização do Cálcio , Humanos , Modelos Moleculares , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
15.
J Pept Sci ; 22(11-12): 711-722, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27933724

RESUMO

Because of resistance development by cancer cells against current anticancer drugs, there is a considerable interest in developing novel antitumor agents. We have previously demonstrated that CIGB-552, a novel cell-penetrating synthetic peptide, was effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Studies of protein-peptide interactions have shown that COMMD1 protein is a major mediator of CIGB-552 antitumor activity. Furthermore, a typical serine-protease degradation pattern for CIGB-552 in BALB/c mice serum was identified, yielding peptides which differ from CIGB-552 in size and physical properties. In the present study, we show the results obtained from a comparative analysis between CIGB-552 and its main metabolites regarding physicochemical properties, cellular internalization, and their capability to elicit apoptosis in MCF-7 cells. None of the analyzed metabolites proved to be as effective as CIGB-552 in promoting apoptosis in MCF-7. Taking into account these results, it seemed important to examine their cell-penetrating capacity and interaction with COMMD1. We show that internalization, a lipid binding-dependent process, is impaired as well as metabolite-COMMD1 interaction, key component of the apoptotic mechanism. Altogether, our results suggest that features conferred by the amino acid sequence are decisive for CIGB-552 biological activity, turning it into the minimal functional unit. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Aminoácidos/química , Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Biotransformação , Caspase 7/genética , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
16.
J Chem Theory Comput ; 11(2): 723-39, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26575407

RESUMO

Modeling of macromolecular structures and interactions represents an important challenge for computational biology, involving different time and length scales. However, this task can be facilitated through the use of coarse-grained (CG) models, which reduce the number of degrees of freedom and allow efficient exploration of complex conformational spaces. This article presents a new CG protein model named SIRAH, developed to work with explicit solvent and to capture sequence, temperature, and ionic strength effects in a topologically unbiased manner. SIRAH is implemented in GROMACS, and interactions are calculated using a standard pairwise Hamiltonian for classical molecular dynamics simulations. We present a set of simulations that test the capability of SIRAH to produce a qualitatively correct solvation on different amino acids, hydrophilic/hydrophobic interactions, and long-range electrostatic recognition leading to spontaneous association of unstructured peptides and stable structures of single polypeptides and protein-protein complexes.


Assuntos
Proteínas/química , Eletricidade Estática , Água/química , Modelos Moleculares , Concentração Osmolar , Conformação Proteica , Solubilidade , Temperatura
17.
Methods Mol Biol ; 1294: 41-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25783876

RESUMO

A significant contribution to the research in cAMP signaling has been made by the development of genetically encoded FRET sensors that allow detection of local concentrations of second messengers in living cells. Nowadays, the availability of a number of 3D structures of cyclic nucleotide-binding domains (CNBD) undergoing conformational transitions upon cAMP binding, along with computational tools, can be exploited for the design of novel or improved sensors. In this chapter we will overview some coarse-grained geometrical considerations on fluorescent proteins, CNBD, and linker peptides to draw simple qualitative rules that may aid the design of novel sensors. Finally, we will illustrate how the application of these simple rules can be used to describe the mechanistic basis of cAMP sensors reported in the literature.


Assuntos
Técnicas Biossensoriais/métodos , Simulação por Computador , AMP Cíclico/metabolismo , Genes Reporter , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/química , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade
18.
Leuk Lymphoma ; 56(4): 1115-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25156469

RESUMO

Chronic lymphocytic leukemia (CLL) is the main cause of autoimmune hemolytic anemia (AHA). However, the cellular basis underlying this strong association remains unclear. We previously demonstrated that leukemic B cells from patients with CLL recognize the erythrocyte protein Band 3, a prevalent autoantigen in AHA. Here we show that the major binding site of Band 3 on leukemic cells is an extrinsic protein identified as high-mobility group nucleosome binding protein 2 (HMGN2), a nucleosome-interacting factor which has not been previously reported at the cell surface. T lymphocytes do not express HMGN2 or bind Band 3. Removal of HMGN2 from the cell membrane abrogated the capacity of Band 3-pulsed CLL cells to induce CD4 + T cell proliferation. We conclude that surface HMGN2 in leukemic B cells is involved in Band 3 binding, uptake and presentation to CD4 + T lymphocytes, and as such may favor the initiation of AHA secondary to CLL.


Assuntos
Anemia Hemolítica Autoimune/metabolismo , Linfócitos B/metabolismo , Membrana Celular/metabolismo , Proteína HMGN2/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Idoso , Anemia Hemolítica Autoimune/etiologia , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Leucemia Linfocítica Crônica de Células B/complicações , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Pessoa de Meia-Idade , Ligação Proteica
19.
Amino Acids ; 38(5): 1583-93, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19888548

RESUMO

The histone chaperone nucleosome assembly protein, hNAP-1, is a host cofactor for the activity of the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. The interaction between these two proteins has been shown to be important for Tat-mediated transcriptional activation and for efficient viral infection. Visualization of HIV-1 transcription and fluorescence resonance energy transfer experiments performed in this work demonstrate that hNAP-1 is not recruited to the site of Tat activity but the two proteins interact at the nuclear rim. These data are consistent with a mechanism that requires hNAP-1 for the transport of Tat within the nucleus rather than for the remodeling of nucleosomes on the provirus. Protein-protein docking and molecular modeling of the complex suggest that this interaction occurs between the basic domain of Tat and the histone-binding domain. The combination of theoretical and whole cell studies provided new insights into the functional significance of the Tat:hNAP-1 recognition.


Assuntos
Produtos do Gene tat/metabolismo , HIV/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Frações Subcelulares/metabolismo , Sequência de Bases , Imunofluorescência , Humanos , RNA Interferente Pequeno
20.
J Mol Graph Model ; 27(4): 563-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18835798

RESUMO

Fluorescent imaging in vivo has became one of the most powerful tools to follow the temporal and spatial localization of a variety of intracellular molecular events. Genetically encoded fluorescent indicators using the FRET effect are routinely used although the molecular basis regulating their functioning is not completely known. Here, the structural and dynamics properties of a commonly used FRET sensor for the second messenger cAMP based on the cAMP-binding domains of the regulatory subunit of Protein Kinase A are presented. Molecular dynamics simulations allowed pinpointing the main features of cAMP driven conformational transition and dissecting the contributions of geometric factors governing the functioning of the biosensor. Simulations suggest that, although orientational factors are not fully isotropic, they are highly dynamic making the inter-chromophore distance the dominant feature, determining the functioning of the probes. It is expected that this computer-aided methodology may state general basis for rational design strategies of fluorescent markers for in vivo imaging.


Assuntos
Corantes Fluorescentes/química , Simulação por Computador , AMP Cíclico/química , AMP Cíclico/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Conformação Molecular , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA