Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Radiat Prot Dosimetry ; 164(1-2): 42-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25205835

RESUMO

Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed.


Assuntos
Bioensaio/métodos , Planejamento em Desastres/organização & administração , Lesões por Radiação/prevenção & controle , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Liberação Nociva de Radioativos/prevenção & controle , Emergências , Europa (Continente) , Humanos , Exposição à Radiação/prevenção & controle , Gestão da Segurança/organização & administração
2.
Mutat Res ; 766-767: 49-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25847272

RESUMO

Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140µM curcumin and 2.2 to 220µM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity testing, which simulates conditions similar to those of the highly radiosensitive lymphocytes of AT patients. The results demonstrate for the first time the cell-cycle-dependent action of these polyphenols. When non-cycling cells are irradiated, the radioprotective properties of curcumin and trans-resveratrol are more prominent. However, when cycling cells are irradiated during G2-phase, the radiosensitizing features of these compounds are more pronounced. This observation offers a new biological basis for the mechanisms underlying the action of these polyphenols in cancer radiotherapy.


Assuntos
Ciclo Celular , Curcumina/farmacologia , Protetores contra Radiação/farmacologia , Radiossensibilizantes/farmacologia , Estilbenos/farmacologia , Animais , Células CHO , Ciclo Celular/efeitos dos fármacos , Fusão Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Cricetinae , Cricetulus , Fase G2/efeitos dos fármacos , Humanos , Testes de Mutagenicidade , Tolerância a Radiação/efeitos dos fármacos , Resveratrol
3.
Mutat Res ; 757(1): 45-51, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23850809

RESUMO

Analysis of premature chromosome condensation (PCC) mediated by fusion of G0-lymphocytes with mitotic CHO cells in combination with rapid visualization and quantification of rings (PCC-Rf) is proposed as an alternative technique for dose assessment of radiation-exposed individuals. Isolated lymphocytes or whole blood from six individuals were γ-irradiated with 5, 10, 15 and 20Gy at a dose rate of 0.5Gy/min. Following either 8- or 24-h post-exposure incubation of irradiated samples at 37°C, chromosome spreads were prepared by standard PCC cytogenetic procedures. The protocol for PCC fusion proved to be effective at doses as high as 20Gy, enabling the analysis of ring chromosomes and excess PCC fragments. The ring frequencies remained constant during the 8-24-h repair time; the pooled dose relationship between ring frequency (Y) and dose (D) was linear: Y=(0.088±0.005)×D. During the repair time, excess fragments decreased from 0.91 to 0.59 chromatid pieces per Gy, revealing the importance of information about the exact time of exposure for dose assessment on the basis of fragments. Compared with other cytogenetic assays to estimate radiation dose, the PCC-Rf method has the following benefits: a 48-h culture time is not required, allowing a much faster assessment of dose in comparison with conventional scoring of dicentrics and rings in assays for chemically-induced premature chromosome condensation (PCC-Rch), and it allows the analysis of heavily irradiated lymphocytes that are delayed or never reach mitosis, thus avoiding the problem of saturation at high doses. In conclusion, the use of the PCC fusion assay in conjunction with scoring of rings in G0-lymphocytes offers a suitable alternative for fast dose estimation following accidental exposure to high radiation doses.


Assuntos
Cromossomos/efeitos da radiação , Linfócitos/efeitos da radiação , Doses de Radiação , Cromossomos em Anel , Animais , Células CHO/efeitos da radiação , Fusão Celular , Cricetulus , Raios gama , Humanos
4.
Radiat Prot Dosimetry ; 151(4): 621-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22923244

RESUMO

In Europe, a network for biological dosimetry has been created to strengthen the emergency preparedness and response capabilities in case of a large-scale nuclear accident or radiological emergency. Through the RENEB (Realising the European Network of Biodosimetry) project, 23 experienced laboratories from 16 European countries will establish a sustainable network for rapid, comprehensive and standardised biodosimetry provision that would be urgently required in an emergency situation on European ground. The foundation of the network is formed by five main pillars: (1) the ad hoc operational basis, (2) a basis of future developments, (3) an effective quality-management system, (4) arrangements to guarantee long-term sustainability and (5) awareness of the existence of RENEB. RENEB will thus provide a mechanism for quick, efficient and reliable support within the European radiation emergency management. The scientific basis of RENEB will concurrently contribute to increased safety in the field of radiation protection.


Assuntos
Proteção Radiológica , Liberação Nociva de Radioativos , Defesa Civil , Emergências , Europa (Continente) , Humanos , Liberação Nociva de Radioativos/prevenção & controle
5.
Pharmacol Ther ; 133(3): 334-50, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22197993

RESUMO

DNA is under constant assault from genotoxic agents which creates different kinds of DNA damage. The precise replication of the genome and the continuous surveillance of its integrity are critical for survival and the avoidance of carcinogenesis. Cells have evolved an arsenal of repair pathways and cell cycle checkpoints to detect and repair DNA damage. When repair fails, typically cell cycle progression is halted and apoptosis is initiated. Here, we review the different sources and types of DNA damage including DNA replication stress and oxidative stress, the repair pathways that cells utilize to repair damaged DNA, and discuss their biological significance, especially with reference to cancer induction and cancer therapy. We also describe the main methodologies currently used for the detection of DNA damage with their strengths and limitations. We conclude with an outline as to how this information can be used to identify novel pharmacological targets for DNA repair pathways or enhancers of DNA damage to develop improved treatment strategies that will benefit cancer patients.


Assuntos
Dano ao DNA , Reparo do DNA , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/genética
7.
Radiat Prot Dosimetry ; 122(1-4): 513-20, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17169946

RESUMO

Measurement of dicentric chromosomes in human lymphocytes has been applied to assess dose received by potentially overexposed people and estimate risk for health effects. Since the dicentrics in exposed people decrease with time, the introduction of fluorescent in situ hybridisation enables to measure stable translocations for biodosimetry and address old or long-term exposures. In addition, premature chromosome condensation, which enables analysis in interphase, offers several advantages for biodosimetry. However, dose and risk estimates derived using cytogenetics and adequate calibration curves are based on the assumption that all individuals respond equally to radiation. Since increased radiosensitivity has been associated with cancer proneness, there is particular interest for risk assessment at the individual level. Towards this end, the efficiency of dynamics that govern DNA repair and apoptosis, as well as the conserved cellular processes that have evolved to facilitate DNA damage recognition using signal transduction pathways to activate cell cycle arrest and preserve genomic integrity, are being investigated. Recent work in cancer cytogenetics and on the modulation of radiation effects at the chromosome level using changes in gene expression associated with proteins or factors such as caffeine or amifostine treatment during G(2) to M-phase transition, reconfirmed the importance of G(2) chekpoint in determining radiosensitivity and of the cdk1/cyclin-B activity in the conversion of DNA damage into chromatid breaks. G(2)-chromosomal radiosensitivity may offer, therefore, a basis for the identification or testing of key genetic targets for modulation of radiation effects and the establishment of a screening method to detect intrinsic radiosensitivity.


Assuntos
Bioensaio/métodos , Aberrações Cromossômicas , Análise Citogenética/métodos , Exposição Ambiental/análise , Linfócitos/efeitos da radiação , Monitoramento de Radiação/métodos , Radiação Ionizante , Medição de Risco/métodos , Carga Corporal (Radioterapia) , Células Cultivadas , Eficiência Biológica Relativa , Fatores de Risco
8.
Ann Hematol ; 85(9): 611-5, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16758191

RESUMO

Recent reports suggest that hemopoietic stem cells with constitutional pericentric inversion of chromosome 9 [inv(9)] may be related to delayed engraftment or hemopoietic defect after stem cell transplantation (SCT). We conducted a retrospective study on five allogeneic SCT in which constitutional inv(9) was detected either in the donor or the recipient. The results showed that hematologic recovery was within the expected time range for all our patients. However, one patient exhibited decreasing blood counts between day +45 and +272 after transplantation, possibly due to protracted cytomegalovirus (CMV) infection and gansiclovir and imatinib treatment. Our findings suggest that constitutional inv(9) may not be associated with delayed hemopoietic recovery after SCT.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 9 , Hematopoese , Recuperação de Função Fisiológica , Transplante de Células-Tronco , Adulto , Antivirais/administração & dosagem , Benzamidas , Cromossomos Humanos Par 9/genética , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/etiologia , Ganciclovir , Doenças Hematológicas/complicações , Doenças Hematológicas/genética , Doenças Hematológicas/terapia , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Humanos , Mesilato de Imatinib , Masculino , Piperazinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/genética , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Fatores de Tempo , Transplante Homólogo
9.
Cytogenet Genome Res ; 104(1-4): 14-20, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15162010

RESUMO

It is widely accepted that unrepaired or misrepaired DNA double strand breaks (DSBs) lead to the formation of chromosome aberrations. DSBs induced in the DNA of higher eukaryotes by endogenous processes or exogenous agents can in principle be repaired either by non-homologous endjoining (NHEJ), or homology directed repair (HDR). The basis on which the selection of the DSB repair pathway is made remains unknown but may depend on the inducing agent, or process. Evaluation of the relative contribution of NHEJ and HDR specifically to the repair of ionizing radiation (IR) induced DSBs is important for our understanding of the mechanisms leading to chromosome aberration formation. Here, we review recent work from our laboratories contributing to this line of inquiry. Analysis of DSB rejoining in irradiated cells using pulsed-field gel electrophoresis reveals a fast component operating with half times of 10-30 min. This component of DSB rejoining is severely compromised in cells with mutations in DNA-PKcs, Ku, DNA ligase IV, or XRCC4, as well as after chemical inhibition of DNA-PK, indicating that it reflects classical NHEJ; we termed this form of DSB rejoining D-NHEJ to signify its dependence on DNA-PK. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DSBs using an alternative pathway operating with slower kinetics (half time 2-10 h). This alternative, slow pathway of DSB rejoining remains unaffected in mutants deficient in several genes of the RAD52 epistasis group, suggesting that it may not reflect HDR. We proposed that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway. Biochemical studies confirm the presence in cell extracts of DNA end joining activities operating in the absence of DNA-PK and indicate the dominant role for D-NHEJ, when active. These observations in aggregate suggest that NHEJ, operating via two complementary pathways, B-NHEJ and D-NHEJ, is the main mechanism through which IR-induced DSBs are removed from the DNA of higher eukaryotes. HDR is considered to either act on a small fraction of IR induced DSBs, or to engage in the repair process at a step after the initial end joining. We propose that high speed D-NHEJ is an evolutionary development in higher eukaryotes orchestrated around the newly evolved DNA-PKcs and pre-existing factors. It achieves within a few minutes restoration of chromosome integrity through an optimized synapsis mechanism operating by a sequence of protein-protein interactions in the context of chromatin and the nuclear matrix. As a consequence D-NHEJ mostly joins the correct DNA ends and suppresses the formation of chromosome aberrations, albeit, without ensuring restoration of DNA sequence around the break. B-NHEJ is likely to be an evolutionarily older pathway with less optimized synapsis mechanisms that rejoins DNA ends with kinetics of several hours. The slow kinetics and suboptimal synapsis mechanisms of B-NHEJ allow more time for exchanges through the joining of incorrect ends and cause the formation of chromosome aberrations in wild type and D-NHEJ mutant cells.


Assuntos
Aberrações Cromossômicas , Reparo do DNA/fisiologia , DNA/genética , Células Eucarióticas/metabolismo , Androstadienos/farmacologia , Animais , Proteínas Aviárias , Linfócitos B/metabolismo , Linfócitos B/efeitos da radiação , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Galinhas , DNA/metabolismo , DNA/efeitos da radiação , Dano ao DNA , DNA Helicases/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Campo Pulsado , Inibidores Enzimáticos/farmacologia , Células Eucarióticas/efeitos da radiação , Glioblastoma/patologia , Humanos , Cinética , Autoantígeno Ku , Modelos Genéticos , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/metabolismo , Rad51 Recombinase , Proteína Rad52 de Recombinação e Reparo de DNA , Wortmanina
10.
Cytogenet Genome Res ; 104(1-4): 315-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15162058

RESUMO

Several studies have been carried out to evaluate the mutagenic and carcinogenic potential of atrazine, the most prevalent of triazine herbicides classified as a "possible human carcinogen". The majority of these studies have been negative but positive responses have been also reported including mammary tumors in female Sprague-Dawley rats. Sister chromatid exchanges (SCEs) caused by the presence of DNA lesions at the moment of DNA replication have been extensively used for genotoxicity testing, but for non-cytotoxic exposures to atrazine controversial results have been reported. Even though exposures to higher concentrations of atrazine could provide clear evidence for its genotoxicity, conventional SCE analysis at metaphase cells cannot be used because affected cells are delayed in G2-phase and do not proceed to mitosis. As a result, the genotoxic potential of atrazine may have been underestimated. Since clear evidence has been recently reported relating SCEs to homologous recombinational events, we are testing here the hypothesis that high concentrations of atrazine will cause a dose-dependent increase in homologous recombinational events as quantified by the frequency of SCEs analyzed in G2-phase. Towards this goal, a new cytogenetic approach is applied for the analysis of SCEs directly in G2-phase prematurely condensed chromosomes (PCCs). The methodology enables the visualization of SCEs in G2-blocked cells and is based on drug-induced PCCs in cultured lymphocytes. The results obtained for high concentrations of atrazine do not demonstrate a dose-dependent increase in homologous recombinational events. They do not support, therefore, a genotoxic mode of action. However, they suggest that an important part in the variation of SCE frequency reported by different laboratories when conventional SCE analysis is applied after exposure to a certain concentration of atrazine, is due to differences in cell cycle kinetics of cultured lymphocytes, rather than to a true biological variation in the cytogenetic end point used.


Assuntos
Atrazina/toxicidade , Cromossomos Humanos/efeitos dos fármacos , Herbicidas/toxicidade , Linfócitos/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos dos fármacos , Adulto , Atrazina/farmacologia , Centrômero/ultraestrutura , Cromossomos Humanos/ultraestrutura , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/toxicidade , Relação Dose-Resposta a Droga , Fase G2 , Herbicidas/farmacologia , Humanos , Linfócitos/ultraestrutura , Metáfase , Mitomicina/farmacologia , Mitomicina/toxicidade , Modelos Genéticos , Homologia de Sequência do Ácido Nucleico
11.
Int J Radiat Biol ; 79(10): 831-8, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14630542

RESUMO

PURPOSE: To investigate whether amifostine is effective at reducing the yield of chromatid breaks when present during G(2)-phase irradiation of human normal cells and cells from cancer prone patients, as well as to study the mechanisms underlying the radioprotective effect of amifostine. MATERIALS AND METHODS: G(2) chromosomal radiosensitivity in the presence or absence of amifostine was studied in healthy donors, cancer patients, ataxia-telangietasia (A-T) patients and five human lymphoblastoid cell lines with genes predisposing to cancer. The yield of chromatid breaks following gamma-irradiation in G(2) phase was obtained at the subsequent metaphase using the G(2) assay. For scoring chromatid damage directly in G(2) or G(0) phase, premature chromosome condensation was used. RESULTS: When amifostine was present during irradiation, the mean yield of radiation-induced chromatid breaks as visualized by the G(2) assay was significantly reduced in healthy donors (t-test, p=0.001), in cells from cancer patients (p=0.001) and in cell lines from patients with genes predisposing to cancer (p=0.01) except ATM(-/-) (0.1

Assuntos
Amifostina/administração & dosagem , Ataxia Telangiectasia/fisiopatologia , Aberrações Cromossômicas/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Fase G2/efeitos da radiação , Predisposição Genética para Doença/prevenção & controle , Neoplasias/fisiopatologia , Protetores contra Radiação/administração & dosagem , Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Análise Citogenética , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Neoplasias/genética , Lesões Pré-Cancerosas , Proteção Radiológica/métodos , Tolerância a Radiação/efeitos dos fármacos , Valores de Referência
12.
Mutagenesis ; 18(6): 539-43, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14614190

RESUMO

The aim of the present study was to develop and standardize a cytogenetic approach for evaluation of the mutagenic potential of chemicals that induce cell cycle arrest in the G2 phase. Even though cytogenetic end-points such as sister chromatid exchange (SCE) have been extensively used to indirectly assess the DNA-damaging potential of various chemicals, they are based on metaphase chromosome analysis. Cells delayed in G2 phase after chemical exposure are not included in conventional SCE analysis. The yield of SCEs obtained, therefore, can be biased, since predominantly undamaged cells proceed to metaphase without delay. To overcome this shortcoming of conventional SCE analysis, the use of a new cytogenetic approach for genotoxic studies is presented that enables the analysis of SCEs directly in G2 phase using drug-induced premature chromosome condensation in cultured peripheral blood lymphocytes. By means of this method, firstly, the possibility that SCE analysis in metaphase chromosomes underestimates the mutagenic potential of various chemicals was tested. Secondly, whether the genotoxic potential of suspected carcinogens could be evaluated using SCE analysis in G2 phase, even at exposures that arrest cells in G2 phase, was examined. Thirdly, whether an important part of the background variation in SCE frequency among individuals is due to the delay of affected cells in G2 phase, rather than to a true biological variation in the cytogenetic end-point used, was tested. The results showed that a higher SCE frequency was scored in G2 phase than in metaphase. Subsequently, the mutagenic potential of chemicals that temporarily arrest cells in G2 phase could now be evaluated more accurately. In addition, it may be of interest to further examine the involvement of cell cycle kinetics in the baseline SCE variation among individuals since a lesser SCE variability was observed when the analysis was carried out in G2 phase rather than at metaphase.


Assuntos
Carcinógenos/farmacologia , Aberrações Cromossômicas , Cromossomos/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Mutagênese , Oxazóis/farmacologia , Bromodesoxiuridina , Cromossomos/genética , Humanos , Linfócitos/sangue , Linfócitos/efeitos dos fármacos , Toxinas Marinhas , Metáfase , Mitose/efeitos dos fármacos , Fosfoproteínas Fosfatases/antagonistas & inibidores , Troca de Cromátide Irmã/efeitos dos fármacos
13.
Cancer Genet Cytogenet ; 129(2): 138-44, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11566344

RESUMO

Cytogenetic studies in hairy cell leukemia (HCL) are rare. In the present report, cytogenetic investigations were performed on marrow cells obtained from 21 HCL male patients with a mean age of 57 years and active disease. Karyotypic analysis was successful in 18 of the 21 patients, either at diagnosis or in relapse after treatment with IFNa. Clonal chromosome abnormalities were detected in eight of 18 cases. The chromosome most frequently involved in the rearranged karyotypes was chromosome 14. Results are discussed with respect to 79 abnormal HCL cases obtained from an extensive review of the literature from 1978 to 2000.


Assuntos
Aberrações Cromossômicas/genética , Células Clonais , Leucemia de Células Pilosas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Transtornos Cromossômicos , Cromossomos Humanos/genética , Citometria de Fluxo , Humanos , Cariotipagem , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade
14.
Int J Radiat Biol ; 77(3): 259-67, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11258840

RESUMO

PURPOSE: To investigate within the framework of a multilaboratory study the suitability of FISH chromosome painting to measure so-called stable translocations in peripheral lymphocytes of Mayak nuclear-industrial workers (from the Southern Urals) and their use for retrospective biodosimetry. MATERIALS AND METHODS: Chromosime analyses were carried out from 69 workers who had received protracted occupational radiation exposures (0.012-6.065 Gy) up to approximately 40 years before blood sampling. Twenty-one unexposed people living in the same area were controls. A multicolour FISH-painting protocol with the target chromosomes 1, 4 and 8 simultaneously with a pancentromeric probe was used to score potentially transmissible chromosome-type aberrations (reciprocal translocations 2B and related 'one-way' patterns I-III according to the S&S classification). RESULTS: Individual biodosimetry estimates were obtained in terms of these potentially long-term surviving aberration types based on the linear component of a low dose-rate gamma-ray calibration curve produced using identical staining and scoring protocols. For comparison, the workers personal and total background doses were converted to red bone marrow doses. The estimated doses were mainly lower than would be predicted by the calibration curve, particularly at accumulated higher dose levels. CONCLUSIONS: Owing to the limited life-time of circulating T-lymphocytes, the long-term persistence of translocations in vivo requires the assumption of a clonal repopulation of these naturally senescing cells from the haemopoietic stem cell compartments. Obviously such a replacement cannot be fully achieved, leading to a temporal decline even of the yield of transmissible aberrations types. Assuming further a highly selective capacity of stem cells against any type of chromosomal damage and the fact that one must rely on partial genome findings, the potential of FISH chromosome painting for retrospective dose reconstruction is probably limited to a decade or so after high-level protracted radiation exposure.


Assuntos
Coloração Cromossômica/métodos , Cromossomos Humanos/efeitos da radiação , Exposição Ocupacional/análise , Radiometria/métodos , Adulto , Idoso , Medula Óssea/efeitos da radiação , Calibragem , Aberrações Cromossômicas/genética , Cromossomos Humanos/genética , Relação Dose-Resposta à Radiação , Feminino , Humanos , Linfócitos/citologia , Masculino , Metáfase , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Federação Russa
15.
Int J Radiat Biol ; 76(5): 607-15, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10866282

RESUMO

PURPOSE: To test the hypothesis that deficient DNA repair as measured by increased G2 chromosomal radiosensitivity results from up-regulation of cdk1/cyclinB and cell cycle control mechanisms during the G2 to M transition. MATERIALS AND METHODS: A total of 185 cancer patients and 25 normal individuals were tested for G2 chromosomal radiosensitivity. The chromatid breaks were analysed in metaphase using the G2 assay or directly in G0 and G2 phase using premature chromosome condensation (PCC). The activity of cdk1/cyclinB, a key regulator of the G2 to M-phase transition, was measured by histone H1 kinase activity and correlated with the development of chromatid breaks after irradiation of cell lines in vitro. RESULTS: Based on the G2 assay, cancer patients on average showed increased chromosomal radiosensitivity above controls. When the analysis was carried out directly in G0 or G2 lymphocytes using PCC, no differences in the induction of chromosomal damage and its repair were observed between G2 assay-sensitive and G2-normal donors. Using the G2 assay to test G2 radiosensitivity in various cell lines, it was found that the higher the cdk1/cyclinB activity level of the cell line tested, the higher the yield of chromatid breaks scored. Furthermore, when mitotic cells from these cell lines were used for PCC induction in irradiated G2 lymphocytes it was observed that the higher the cdk1/cyclinB activity level of mitotic cells used, the higher was the induced yield of chromatid breaks. CONCLUSION: The cdk1/cyclin-B activity levels during the G2 to M transition impair DNA repair processes and play a major role in the yield of chromatid breaks induced after G2-irradiation. Regulation of cdk1/cyclinB complex activity rather than deficient repair enzymes of DNA damage may underlie the mechanisms of G2 radiosensitivity.


Assuntos
Proteína Quinase CDC2/fisiologia , Cromossomos/efeitos da radiação , Ciclina B/fisiologia , Fase G2/genética , Neoplasias/radioterapia , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Ciclina B/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Predisposição Genética para Doença , Humanos , Linfócitos/efeitos da radiação , Mitose/efeitos da radiação , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas , Regulação para Cima
16.
Mutagenesis ; 14(2): 193-8, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10229921

RESUMO

Photodynamic therapy (PDT) was recently introduced in clinical practice for the management of cancer. As far as PDT relies on the combined action of a photosensitizer and a laser source, there is a need to evaluate the genotoxic and mutagenic potential of this treatment modality. This paper reports the effects of various photosensitizer and photo-irradiation doses on lethality to the MIA PaCa cell line using ZnPcS4 as the photosensitizer. The sister chromatid exchange (SCE) assay was used to evaluate the genotoxicity of various photosensitizer and photo-irradiation doses. Also, chromosomal aberrations at various time intervals post-irradiation were evaluated. The results showed that a combination of 3 J/cm2 irradiance with 5 microM ZnPcS4 concentration leads to the LD90 72 h post-irradiation. Eight days post-irradiation the LD90 level was achieved using a light dose of 3 J/cm2, independent of ZnPcS4 concentration. The SCE assay showed that cells treated with various light and drug doses presented no genotoxic potential, as SCE levels were not different from untreated (control) cells. Chromosomal analysis after PDT treatment at various time intervals post-irradiation showed that there was no significant chromosomal damage in cells treated photodynamically compared with untreated controls. The results show that the cell killing mechanism after PDT is not at the chromosome level, but may be at a different cellular level, such as plasma membranes, mitochondria, etc.


Assuntos
Indóis/toxicidade , Mutagênese , Compostos Organometálicos/toxicidade , Fotoquimioterapia/efeitos adversos , Adenocarcinoma/metabolismo , Morte Celular , Sobrevivência Celular , Aberrações Cromossômicas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Técnicas In Vitro , Terapia a Laser , Pâncreas/metabolismo , Fármacos Fotossensibilizantes/toxicidade , Troca de Cromátide Irmã , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
17.
Cancer Genet Cytogenet ; 106(2): 180-1, 1998 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-9797788

RESUMO

A 65-year-old woman with chronic myelomonocytic leukemia was shown to have trisomy 6 and multiple double minute chromosomes. The patient had no history of prior exposure to any mutagenic or carcinogenic agents. To our knowledge, this is the first report for presence of only these two aberrations. The expression of several oncoproteins and onco-related proteins was detected immunohistochemically in bone marrow cells. Among them, only the bcl-2 oncoprotein was positively stained in 100% of myeloblasts. Although the c-myc oncogene is frequently reported to be overexpressed in myeloid disorders with double minutes and associated with chemotherapy resistance and disease aggressiveness, in our case, the c-myc oncoprotein was not positively expressed. The patient received chemotherapy and complete hematological remission was successfully achieved.


Assuntos
Cromossomos Humanos Par 6 , Leucemia Mielomonocítica Crônica/genética , Trissomia , Idoso , Aberrações Cromossômicas , Feminino , Humanos , Cariotipagem
18.
Cancer Res ; 53(23): 5592-6, 1993 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-8242608

RESUMO

We measured mitosis-promoting factor (MPF) activity in two cell lines, CHO and HeLa, extensively used at mitosis as inducers in the assay of premature chromosome condensation to study the yield and the repair kinetics of radiation damage in interphase chromosomes of diverse cell lines. We found a 2.5-fold higher MPF activity in HeLa as compared to CHO mitotic cells per mg of crude extract protein. HeLa mitotic cells, when used as inducers of premature chromosome condensation, uncovered two times more interphase chromosome breaks in irradiated, nonstimulated human lymphocytes as compared to CHO mitotic cells. A 2-fold increase in the yield of interphase chromosome breaks with HeLa mitotics was also observed in G1 cells from plateau-phase CHO cultures. Thus, MPF activity may be a contributing factor of the process that transforms radiation-induced DNA damage to chromosome breaks, and subsequently to other types of lethal chromosome aberrations. We speculate that the level and the control in the cell cycle of MPF activity may influence the radiosensitivity of cells to killing. The results strongly suggest that a direct comparison between the yields of interphase chromosome breaks measured in different laboratories may not be possible unless similar inducer cells with similar MPF activity are used.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Interfase/efeitos da radiação , Fator Promotor de Maturação/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Técnicas Genéticas , Células HeLa , Humanos , Mitose , Dados de Sequência Molecular , Fosforilação
19.
Int J Radiat Biol ; 63(3): 349-54, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8095285

RESUMO

Induction of premature chromosome condensation enables direct observation of radiation-induced cytogenetic damage in non-stimulated, interphase, human peripheral blood lymphocytes. This phenomenon can be explored in radiation protection for biological dosimetry in instances of accidental exposure to ionizing radiation. Quantification of an exposure by means of this approach has been limited so far mainly to the analysis of chromosome fragments. This limitation is due to the fact that conventional Giemsa staining of prematurely condensed chromosomes (PCCs) does not allow visualization of the centromeric regions and, as a result, the identification of dicentrics, centric rings and acentric fragments. In the present report a C-banding procedure, refined to avoid swelling and chromosome distortion of freshly prepared PCCs spreads, is used to identify such aberrations in non-stimulated human lymphocytes. The method allows immediate banding of the centromeric regions and enables scoring of aberrations within a time interval (3-4 h after blood sample withdrawal) that is only a fraction of that normally required when cells stimulated to proliferate are analysed at metaphase. The dose-response for dicentrics and centric rings measured in interphase lymphocytes was found to be similar to that obtained at metaphase. Measurement of dicentrics and centric rings in prematurely condensed chromosomes of human lymphocytes would provide valuable information on radiation dose estimates, especially in cases of extreme urgency.


Assuntos
Bandeamento Cromossômico , Interfase , Linfócitos/ultraestrutura , Radiometria/métodos , Relação Dose-Resposta à Radiação , Humanos
20.
Radiat Res ; 125(1): 56-64, 1991 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1986401

RESUMO

The effect of BrdU incorporation on cell radiosensitivity as well as on the induction of chromosome damage by radiation was studied in plateau-phase xrs-5 cells using the premature chromosome condensation (PCC) method. It is well known that xrs-5 cells are sensitive to ionizing radiation and defective in the repair of radiation-induced DNA double-strand breaks, chromosome damage, and potentially lethal damage (PLD). Compared to repair-proficient CHO 10B cells, a reduction was observed in the overall BrdU-mediated radiosensitization in plateau-phase xrs-5 cells for the same degree of thymidine replacement. This finding is interpreted with a model for BrdU-induced radiosensitization advanced previously, in which two distinct components act to produce the overall radiosensitization observed. One component involves processes associated with the increase in initial damage (DNA and chromosome) production per unit absorbed dose and causes an increase in the slope of the survival curve, while the second component involves enhanced fixation of radiation-induced damage (PLD) and causes a reduction in the width of the shoulder of the survival curve. It is suggested that in plateau-phase xrs-5 cells, the deficiency in the repair of radiation-induced damage compromises BrdU-mediated radiosensitization by leaving active only the radiosensitization component that is associated with an increase in damage induction. Enhancement of cell killing by BrdU in plateau-phase xrs-5 cells resulted in a decrease in D0, the relative value of which was similar to the relative increase in the production of chromosome damage as measured by the PCC method. The relative values for the change in D0 and the production of chromosome aberrations were similar in plateau-phase CHO 10B and xrs-5 cells, suggesting that the physicochemical and/or biochemical processes associated with this phenomenon are the same in the two cell lines. Radiosensitization of a magnitude similar to that observed in exponentially growing CHO 10B cells was induced by BrdU in exponentially growing xrs-5 cells. This effect is attributed to a partial expression of the repair gene (transiently during S phase in all cells, or throughout the cycle in a fraction of cells) that permits some repair of radiation-induced damage and which is compromised by BrdU.


Assuntos
Bromodesoxiuridina/farmacologia , Radiossensibilizantes/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromossomos/efeitos dos fármacos , Cromossomos/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA