RESUMO
Vitellogenin (VTG) is a biomarker for possible endocrine activity of chemicals acting via the estrogen, androgen, or steroidogenesis pathways. VTG is assessed in standardised fish guideline studies conducted for regulatory safety assessment of chemicals. VTG data can be highly variable leading to concerns for potential equivocal, false positive and/or negative outcomes. Consequently, additional fish testing may be required to address uncertainties in the VTG response, and possibly erroneous/missed identification of endocrine activity. To better understand the technical challenges of VTG assessment and reporting for regulatory purposes, a survey was sent to 27 testing laboratories performing these analyses. The survey results from 16 respondents (6 from the UK, 3 from the USA, and 7 from the EU) were analysed and discussed in a follow-up webinar. High variability in background VTG concentrations was widely acknowledged and thought to be associated with fish batch, husbandry, laboratory practices, and several methodological aspects. These include sample collection and storage, VTG quantification, data handling, and the benchmarks used for data acceptability. Information gathered in the survey provides a basis for improving and harmonizing the measurement of VTG in fish, and an opportunity to reassess the suitability of current acceptability criteria in test guidelines.
Assuntos
Vitelogeninas , Poluentes Químicos da Água , Animais , Vitelogeninas/metabolismo , Laboratórios , Peixes/metabolismo , Estrogênios/metabolismo , Sistema Endócrino , Poluentes Químicos da Água/análiseRESUMO
Vitellogenin (VTG), a biomarker for endocrine activity, is a mechanistic component of the regulatory assessment of potential endocrine-disrupting properties of chemicals. This review of VTG data is based on changes reported for 106 substances in standard fish species. High intra-study and inter-laboratory variability in VTG concentrations was confirmed, as well as discrepancies in interpretation of results based on large differences between fish in the dilution water versus solvent control, or due to the presence of outlier measurements. VTG responses in fish were ranked against predictions for estrogen receptor agonist activity and aromatase inhibition from bioactivity model output and ToxCast in vitro assay results, respectively. These endocrine mechanisms explained most of the VTG responses in the absence of systemic toxicity, the magnitude of the VTG response being proportional to the in vitro potency. Interpretation of the VTG data was sometimes confounded by an alternative endocrine mechanism of action. There was evidence for both false positive and negative responses for VTG synthesis, but overall, it was rare for substances without endocrine activity in vitro to cause a concentration-dependent VTG response in fish in the absence of systemic toxicity. To increase confidence in the VTG results, we recommend improvements in the VTG measurement methodologies and greater transparency in reporting of VTG data (including quality control criteria for assay performance). This review supports the application of New Approach Methodologies (NAMs) by demonstrating that endocrine activity in vitro from mammalian cell lines is predictive for in vivo VTG response in fish, suggesting that in vitro mechanistic data could be used more broadly in decision-making to help reduce animal testing.
Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Vitelogeninas/metabolismo , Peixes/metabolismo , Estrogênios/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/metabolismo , Poluentes Químicos da Água/análise , Mamíferos/metabolismoRESUMO
Vitellogenin (Vtg) is an established and sensitive endpoint for analysis of exposure to (anti-)oestrogens and their mimics in fish [Sumpter, J.P., 1995. Feminized responses in fish to environmental estrogens. Toxicol. Lett. 82, 737-742; Arukwe, A., Goksøyr, A., 2003. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp. Hepatol. 2, 4. ]. In some instances, links have been drawn between high level induction of Vtg and adverse health effects in fish [Herman, R.L., Kincaide, H.L., 1988. Pathological effects of orally administered estradiol to rainbow trout. Aquaculture 72, 165-172; Schwaiger, J., Spieser, O.H., Bauer, C., Ferling, H., Mallow, U., Kalbfus, W., Negele, R.D., 2000. Chronic toxicity of nonylphenol and ethinyloestraiol: haematological and histopathological effects in juvenile common carp (Cyprinus carpio). Aquat. Toxicol. 51, 69-78]. The widespread use of Vtg as a biomarker has led to the development of a variety of assays to quantitatively measure Vtg concentrations in tissue samples from fish, and hence a need for a standardization of the performance criteria and validation of such assays [Goksøyr, A., Eidem, J.K., Kristiansen, S.I., Nilsen, B.M., 2003. On the need for a standardized set-up for validation studies of fish vitellogenin assays as an endpoint in endocrine disruptor testing and screening-a proposal. ]. One of the most popular test fish species for assessing chemical effects is the fathead minnow (Pimephales promelas), which is now used widely for studies into endocrine disruption [Panter, G.H., Hutchinson, T.H., Lange, R., Lye, C.M., Sumpter, J.P., Zerulla, M., Tyler, C.R., 2002. Utility of a juvenile fathead minnow screening assay for detecting (anti)estrogenic substances. Environ. Toxicol. Chem. 21, 319-326; Hutchinson, T.H., Yokota, H., Hagino, S., Ozato, K., 2003. Development of fish tests for endocrine disruptors. Pure Appl. Chem. 75, 2343-2353]. This paper describes the development and validation of a new, homologous enzyme-linked immunosorbent assay (ELISA) for quantification of Vtg in this fish species.
Assuntos
Cyprinidae/metabolismo , Ensaio de Imunoadsorção Enzimática/veterinária , Vitelogeninas/análise , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Exposição Ambiental/análise , Ensaio de Imunoadsorção Enzimática/métodos , Estrogênios/toxicidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura , Fatores de TempoRESUMO
The European Chemical Industry's aquatic research program for endocrine disrupters includes the development of an in vivo juvenile fathead minnow (Pimephales promelas) screening assay. Working within the Organization for Economic Cooperation and Development's (OECD, Paris, France) tiered approach to endocrine disrupter evaluation in fish, the juvenile fish screening protocol was adapted from the OECD test guideline 204. Six chemicals, with different (anti-)estrogenic potencies, were used to develop the in vivo juvenile fish screening protocol: diethylstilbestrol, 17alpha-ethynylestradiol, genistein, methoxychlor, 4-tert-pentylphenol, and ZM189,154 (a novel pharmaceutical antiestrogen). Mixed-sex juvenile fathead minnows were exposed to individual chemicals (with chemical analyzes) and sampled after 4, 7, 14, and 21 d of exposure. Wet weight, total length, condition factor, and whole-body homogenate concentrations of vitellogenin (VTG) were determined. Estrogens and antiestrogens were detected in this screen by virtue of the VTG response (an elevation or suppression, respectively) after 14 d. The study showed that the use of VTG concentrations in mixed-sex juvenile fish provides a sensitive and robust assay for the detection of both estrogenic and antiestrogenic chemicals, with widely divergent potencies.