Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(5): 2710-2724, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38591866

RESUMO

In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.


Assuntos
Acetilcisteína , Materiais Biocompatíveis , Teste de Materiais , Nanopartículas , Agulhas , Tamanho da Partícula , Impressão Tridimensional , Rivastigmina , Acetilcisteína/química , Acetilcisteína/farmacologia , Rivastigmina/química , Rivastigmina/farmacologia , Rivastigmina/administração & dosagem , Humanos , Nanopartículas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Pele/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sobrevivência Celular/efeitos dos fármacos
2.
Microorganisms ; 10(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36013989

RESUMO

In the large and morphologically diverse phylum of Chlorophyta, new taxa are discovered every year and their phylogenetic relationships are reconstructed by the incorporation of molecular phylogenetic methods into traditional taxonomy. Herein, we aim to contribute to the photosynthetic microorganisms' diversity knowledge in the Mediterranean area, a relatively unexplored ecoregion with high diversity. Based on a polyphasic approach, 18 Chlorophyta isolates were investigated and characterized. Morphological characteristics and ultrastructure, the phylogeny based on 18S rRNA gene (small subunit ribosomal RNA), 18S-28S internal transcribed spacer (ITS region), and the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit region (rbcL gene), support establishing four new genera (Nomia, Ava, Akraea, Lilaea) and five new species (Spongiosarcinopsis limneus, N. picochloropsia, Av. limnothalassea, Ak. chliaropsychia, and L. pamvotia) belonging to orders Sphaeropleales, Chlorellales, and Chlamydomonadales. For some of them, this is the first report of their occurrence in specific aquatic environments.

3.
J Inorg Biochem ; 228: 111695, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35007963

RESUMO

A series of heteroleptic Ag(I) complexes bearing 4,6-dimethyl-2-pyrimidinethiol (dmp2SH), i.e., [AgCl(dmp2SH)(PPh3)2] (1), [Ag(dmp2SH)(PPh3)2]NO3 (2), [Ag(dmp2SΗ)(xantphos)]NO3 (3), [Ag(µ-dmp2S)(PPh3)]2 (4), [Ag(dmp2S)(xantphos)] (5), [Ag(µ-dmp2S)(DPEphos)]2 (6) (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and DPEPhos = bis[(2-diphenylphosphino)phenyl]ether) were synthesized. The complexes display systematic variation of particular structural characteristics which were proved to have a significant impact on their in vitro cytotoxicity and antimicrobial properties. A moderate-to-high potential for bacteria growth inhibition was observed for all complexes, with 2, 3 and 5 being particularly effective against Gram-(+) bacteria (IC50 = 1.6-4.5 µM). The three complexes exhibit high in vitro cytotoxicity against HeLa and MCF-7 cancer cells (IC50 = 0.32-3.00 µΜ), suggesting the importance of coordination unsaturation and cationic charge for effective bioactivity. A very low cytotoxicity against HDFa normal cells was observed, revealing a high degree of selectivity (selectivity index ~10) and, hence, biocompatibility. Fluorescence microscopy using 2 showed effective targeting on the membrane of the HeLa cancer cells, subsequently inducing cell death. Binding of the complexes to serum albumin proteins is reasonably strong for potential uptake and subsequent release to target sites. A moderate in vitro antioxidant capacity for free radicals scavenging was observed and a low potential to destroy the double-strand structure of calf-thymus DNA by intercalation, suggesting likely implication of these properties in the bioactivity mechanisms of these complexes. Further insight into possible mechanisms of bioactivity was obtained by molecular modeling calculations, by exploring their ability to act as potential inhibitors of DNA-gyrase, human estrogen receptor alpha, human cyclin-dependent kinase 6, and human papillomavirus E6 oncoprotein.


Assuntos
Anti-Infecciosos/farmacologia , Complexos de Coordenação/química , Prata/química , Tioamidas/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/metabolismo , DNA/metabolismo , DNA Girase/metabolismo , Células HeLa , Humanos , Ligantes , Células MCF-7 , Testes de Sensibilidade Microbiana/métodos , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Fosfinas/química , Prata/farmacologia , Tioamidas/farmacologia , Xantenos/química
4.
Mol Oncol ; 16(8): 1694-1713, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34614271

RESUMO

Ubiquitin-conjugating enzyme E2T (UBE2T) has been implicated in many types of cancer including hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) process plays a fundamental role during tumor metastasis and progression. However, the molecular mechanisms underlying EMT in HCC in accordance with UBE2T still remain unknown. In this study, we showed that UBE2T overexpression augmented the oncogenic properties and specifically EMT in HCC cell lines, while its silencing attenuated them. UBE2T affected the activation of EMT-associated signaling pathways: MAPK/ERK, AKT/mTOR, and Wnt/ß-catenin. In addition, we revealed that the epithelial protein complex of E-cadherin/ß-catenin, a vital regulator of signal transduction in tumor initiation and progression, was totally disrupted at the cell membrane. In particular, we observed that UBE2T overexpression led to E-cadherin loss accompanied by a simultaneous elevation of both cytoplasmic and nuclear ß-catenin, while its silencing resulted in a strong E-cadherin turnover at the cell membrane. Interestingly, chemical inhibition of the MAPK/ERK, AKT/mTOR, and Wnt/ß-catenin signaling pathways demonstrated that the nuclear translocation of ß-catenin and subsequent EMT was enhanced mainly by MAPK/ERK. Collectively, our findings demonstrate the UBE2T/MAPK-ERK/ß-catenin axis as a critical regulator of cell state transition and EMT in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Caderinas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Ecotoxicol Environ Saf ; 208: 111386, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035915

RESUMO

The present work aims to provide insight into interactions between trace metals and higher plants, focusing on nickel uptake and its effects in seagrasses at environmentally relevant concentrations. Total and intracellular nickel accumulation kinetics, nickel effects on structural cell components, oxidative stress marker and cellular viability, and the accumulation kinetics-toxic effects relationship were investigated in leaves of Halophila stipulacea plants incubated in seawater under laboratory conditions containing nickel ions at 0.01-10 mg L-1 for 14 days. Nickel accumulation kinetics in H. stipulacea young and older apical leaves followed a Michaelis-Menten-type equation, allowing the calculation of uptake parameters; uptake rate (Vc) and equilibrium concentration (Ceq) tended to increase with the increase of nickel concentration in the medium. A dose- and uptake parameter-dependent actin filament (AF) and endoplasmic reticulum (ER) impairment was observed, whereas no effects occurred on microtubules and cell ultrastructure. AF disturbance and ER aggregation were firstly observed in differentiated cells at the lowest concentration on the 12th and 14th day, respectively, while AF disruption in meristematic cells firstly occurred at 0.05 mg L-1; the effects appeared earlier and were more acute at higher concentrations. Increased H2O2 levels were detected, while, at the highest exposures, a significant reduction in epidermal cell viability in older leaves occurred. The lowest total nickel concentrations in young leaves associated with AF disturbance onset at nickel exposure concentrations of 0.01-1 mg L-1 varied between 18.98 and 63.93 µg g-1 dry wt; importantly, they were comparable to nickel concentrations detected in seagrass leaves from various locations. The relationships between exposure concentration, uptake kinetic parameters and toxic effect onset were satisfactorily described by regression models. Our findings suggest that (a) nickel may pose a threat to seagrass meadows, (b) H. stipulacea can be regarded as an efficient biomonitor of nickel, (c) AF and ER impairment in seagrass leaves can be considered as early biomarkers of nickel-induced stress, and (d) the regression models obtained can be used as a tool to evaluate ambient nickel levels and to detect ecotoxicologically significant nickel contamination. The data presented can be utilized in the management and conservation of the coastal environment.


Assuntos
Hydrocharitaceae/metabolismo , Níquel/metabolismo , Poluentes Químicos da Água/metabolismo , Transporte Biológico , Biomarcadores/análise , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Cinética , Microtúbulos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Água do Mar/química , Oligoelementos/análise
6.
Mol Phylogenet Evol ; 155: 106991, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098986

RESUMO

Cyanobacteria are often reported as abundant components of the sponge microbiome; however their diversity below the phylum level is still underestimated. Aiming to broaden our knowledge of sponge-cyanobacteria association, we isolated cyanobacterial strains from Aegean Sea sponges in previous research, which revealed high degree of novel cyanobacterial diversity. Herein, we aim to further characterize sponge-associated cyanobacteria and re-evaluate their classification based on an extensive polyphasic approach, i.e. a combination of molecular, morphological and ecological data. This approach resulted in the description of five new genera (Rhodoploca, Cymatolege, Metis, Aegeococcus, and Thalassoporum) and seven new species (R. sivonenia, C. spiroidea, C. isodiametrica, M. fasciculata, A. anagnostidisi, A. thureti, T. komareki) inside the order Synechococcales, and a new pleurocapsalean species (Xenococcus spongiosum). X. spongiosum is a baeocyte-producing species that shares some morphological features with other Xenococcus species, but has distinct phylogenetic and ecological identity. Rhodoploca, Cymatolege, Metis and Thalassoporum are novel well supported linages of filamentous cyanobacteria that possess distinct characters compared to their sister taxa. Aegeococcus is a novel monophyletic linage of Synechococcus-like cyanobacteria exhibiting a unique ecology, as sponge-dweller. The considerable number of novel taxa characterized in this study highlights the importance of employing polyphasic culture-dependent approaches in order to reveal the true cyanobacterial diversity associated with sponges.


Assuntos
Cianobactérias/classificação , Poríferos/microbiologia , Animais , Sequência de Bases , Cianobactérias/genética , Cianobactérias/ultraestrutura , DNA Espaçador Ribossômico/genética , Conformação de Ácido Nucleico , Ficobiliproteínas/metabolismo , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
7.
J Cell Physiol ; 236(2): 1529-1544, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32749687

RESUMO

Exosome selectivity mechanisms underlying exosome-target cell interactions and the specific traits affecting their capability to communicate still remain unclear. Moreover, the capacity of exosomes to efficiently deliver their molecular cargos intracellularly needs precise investigation towards establishing functional exosome-based delivery platforms exploitable in the clinical practice. The current study focuses on: (a) exosome production from normal MRC-5 and Vero cells growing in culture, (b) physicochemical characterization by dynamic light scattering (DLS) and cryo-transmission electron microscopy; (c) cellular uptake studies of rhodamine-labeled exosomes in normal and cancer cells, providing to exosomes either "autologous" or "heterologous" cellular delivery environments; and (d) loading exogenous Alexa Fluor 488-labeled siRNA into exosomes for the assessment of their delivering capacity by immunofluorescence in a panel of recipient cells. The data obtained thus far indicate that MRC-5 and Vero exosomes, indeed exhibit an interesting delivering profile, as promising "bio-shuttles," being pharmacologically exploitable in the context of theranostic applications.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos/química , MicroRNAs/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Animais , Comunicação Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Microscopia Crioeletrônica , Exossomos/genética , Humanos , MicroRNAs/química , RNA Interferente Pequeno/química , Células Vero
8.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348912

RESUMO

Microcystins (MCs) are cyanobacterial toxins and potent inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), which are involved in plant cytoskeleton (microtubules and F-actin) organization. Therefore, studies on the toxicity of cyanobacterial products on plant cells have so far been focused on MCs. In this study, we investigated the effects of extracts from 16 (4 MC-producing and 12 non-MC-producing) cyanobacterial strains from several habitats, on various enzymes (PP1, trypsin, elastase), on the plant cytoskeleton and H2O2 levels in Oryza sativa (rice) root cells. Seedling roots were treated for various time periods (1, 12, and 24 h) with aqueous cyanobacterial extracts and underwent either immunostaining for α-tubulin or staining of F-actin with fluorescent phalloidin. 2,7-dichlorofluorescein diacetate (DCF-DA) staining was performed for H2O2 imaging. The enzyme assays confirmed the bioactivity of the extracts of not only MC-rich (MC+), but also MC-devoid (MC-) extracts, which induced major time-dependent alterations on both components of the plant cytoskeleton. These findings suggest that a broad spectrum of bioactive cyanobacterial compounds, apart from MCs or other known cyanotoxins (such as cylindrospermopsin), can affect plants by disrupting the cytoskeleton.


Assuntos
Carcinógenos/toxicidade , Cianobactérias/metabolismo , Microcistinas/toxicidade , Microtúbulos/efeitos dos fármacos , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
9.
Eur J Pharm Biopharm ; 156: 20-39, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871196

RESUMO

The research presented here shows QbD implementation for the optimisation of the key process parameters in electrohydrodynamic atomisation (EHDA). Here, the electrosprayed nanoparticles and electrospun fibers consisting of a polymeric matrix and dye. Eight formulations were assessed consisting of 5% w/v of polycaprolactone (PCL) in dichloromethane (DCM) and 5% w/v polyvinylpyrrolidone (PVP) in ethanol. A full factorial DOE was used to assess the various parameters (applied voltage, deposition distance, flow rate). Further particle and fiber analysis using Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), particle/fiber size distribution. In addition to this in vitro release studied were carried out using fluorescein and Rhodamine B as model dyes and in vitro permeation studies were applied. The results show a significant difference in the morphology of resultant structures as well as a more rapid release profile for the PVP particles and fibers in comparison to the sustained release profiles found with PCL. In vitro drug release studies showed 100% drug release after 7 days for PCL particles and showed 100% drug release within 120 min for PVP particles. The release kinetics and the permeation study showed that the MN successfully pierced the membrane and the electrospun MN coating released a large amount of the loaded drug within 6 h. This study has demonstrated the capability of these robust MNs to encapsulate a diverse range drugs within a polymeric matrix giving rise to the potential of developed personalised medical devices.


Assuntos
Microinjeções/instrumentação , Agulhas , Polímeros/química , Pesquisa Qualitativa , Tecnologia Farmacêutica/instrumentação , Liberação Controlada de Fármacos , Microinjeções/normas , Agulhas/normas , Poliésteres/química , Poliésteres/normas , Polímeros/normas , Povidona/química , Povidona/normas , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tecnologia Farmacêutica/normas
10.
J Eukaryot Microbiol ; 67(6): 660-670, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32682339

RESUMO

Symbioses between sponges and photosynthetic organisms are very diverse regarding the taxonomy and biogeography of both hosts and symbionts; to date, most research has focused on the exploration of bacterial diversity. The present study aims to characterize the culturable diversity of photosynthetic eukaryotes associated with sponges in the Aegean Sea, on which no information exists. Five microalgae strains were isolated from marine sponges; the strains were characterized by morphological features, and the 18S rRNA, 18S-28S Internal Transcribed Spacer, and ribulose-bisphosphate carboxylase large chain (rbcL) sequences. Our polyphasic approach showed that the strains belonged to the green-alga Acrochaete leptochaete, the diatom Nanofrustulum cf. shiloi, the rhodophyte Acrochaetium spongicola, and the chlorachniophyte Lotharella oceanica. A. leptochaete is reported for the first time in sponges, even though green algae are known to be associated with sponges. Nanofrustulum shiloi was found in association with the sponges Agelas oroides and Chondrilla nucula, whereas information existed only for its association with the species Aplysina aerophoba. Acrochaetium spongicola was found for the first time in association with sponges in the eastern Mediterranean. Moreover, we report herein for the first time a sponge-chlorarachniophycean association. Our research revealed new diversity of microalgae associated with sponges and added new records of sponge species, previously unknown for their association with microalgae.


Assuntos
Microalgas/classificação , Microalgas/genética , Poríferos/microbiologia , Animais , Biodiversidade , DNA de Algas/genética , Interações entre Hospedeiro e Microrganismos , Microalgas/isolamento & purificação , Fotossíntese , Filogenia , RNA Ribossômico 18S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Simbiose
11.
Cancers (Basel) ; 12(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722292

RESUMO

Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated with breast cancer development and progression. Here, we report a critical role for CYLD in maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that was dependent on the concomitant activation of the transcription factors Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor beta (TGF)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ and the TGF pathway in mammary epithelial cells, in order to maintain their phenotypic identity and homeostasis. Consequently, they provide a novel conceptual framework that supports and explains a causal implication of deficient CYLD expression in aggressive human breast cancers.

12.
J Phycol ; 55(4): 882-897, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31001838

RESUMO

Cyanobacterial diversity associated with sponges remains underestimated, though it is of great scientific interest in order to understand the ecology and evolutionary history of the symbiotic relationships between the two groups. Of the filamentous cyanobacteria, the genus Leptolyngbya is the most frequently found in association with sponges as well as the largest and obviously polyphyletic group. In this study, five Leptolyngbya-like sponge-associated isolates were investigated using a combination of molecular, chemical, and morphological approach and revealed a novel marine genus herein designated Leptothoe gen. nov. In addition, three new species of Leptothoe, Le. sithoniana, Le. kymatousa, and Le. spongobia, are described based on a suite of distinct characters compared to other marine Leptolyngbyaceae species/strains. The three new species, hosted by four sponge species, showed different degrees of host specificity. Leptothoe sithoniana and Le. kymatousa hosted by the sponges Petrosia ficiformis and Chondrilla nucula, respectively, seem to be more specialized than Le. spongobia, which was hosted by the sponges Dysidea avara and Acanthella acuta. All three species contained nitrogen-fixing genes and may contribute to the nitrogen budget of sponges. Leptothoe spongobia TAU-MAC 1115 isolated from Acanthella acuta was shown to produce microcystin-RR indicating that microcystin production among marine cyanobacteria could be more widespread than previously determined.


Assuntos
Cianobactérias , Filogenia , RNA Ribossômico 16S , Simbiose
13.
Mol Pharm ; 16(6): 2326-2341, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31026168

RESUMO

Combination therapy has been conferred with manifold assets leveraging the synergy of different agents to achieve a sufficient therapeutic outcome with lower administered drug doses and reduced side effects. The therapeutic potency of a self-assembling peptide hydrogel for the co-delivery of doxorubicin and curcumin was assessed against head and neck cancer cells. The dual loaded peptide hydrogel enabled control over the rate of drug release based on drug's aqueous solubility. A significantly enhanced cell growth inhibitory effect was observed after treatment with the combination drug-loaded hydrogel formulations compared to the respective combination drug solution. The synergistic pharmacological effect of selected hydrogel formulations was further confirmed with enhanced apoptotic cell response, interference in cell cycle progression, and significantly altered apoptotic/anti-apoptotic gene expression profiles obtained in dose levels well below the half-maximal inhibitory concentrations of both drugs. The in vivo antitumor efficacy of the drug-loaded peptide hydrogel formulation was confirmed in HSC-3 cell-xenografted severe combined immunodeficient mice and visualized with µCT imaging. Histological and terminal deoxynucleotidyl transferase dUTP nick end labeling assay analyses of major organs were implemented to assess the safety of the topically administered hydrogel formulation. Overall, results demonstrated the therapeutic utility of the dual drug-loaded peptide hydrogel as a pertinent approach for the local treatment of head and neck cancer.


Assuntos
Curcumina/uso terapêutico , Doxorrubicina/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Hidrogéis/química , Peptídeos/química , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos SCID , Microscopia de Força Atômica , Reologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Pharm Res ; 35(8): 166, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29943122

RESUMO

PURPOSE: Localized chemotherapy has gained significant impetus for the management of malignant brain tumors. In the present study, we appraised the versatility of an in-situ gel forming self-assembling peptide, ac-(RADA)4-CONH2, as a biocompatible delivery depot of the chemotherapeutic drug doxorubicin (DOX) and the anticancer agent curcumin (CUR), respectively. METHODS: The morphology and mechanical properties of ac-(RADA)4-CONH2 were assessed with scanning electron microscopy (SEM) and rheological studies. The in vitro drug release from ac-(RADA)4-CONH2 was monitored in phosphate-buffered saline pH 7.4. Distribution of the fluorescent actives within the peptide matrix was visualized with confocal laser scanning microscopy (CLSM). The in vitro biological performance of the ac-(RADA)4-CONH2-DOX and ac-(RADA)4-CONH2-CUR was evaluated on the human glioblastoma U-87 MG cell line. RESULTS: SEM studies revealed that the ac-(RADA)4-CONH2 hydrogel contains an entangled nanofiber network. Rheology studies showed that the more hydrophobic CUR resulted in a stiffer hydrogel compared with ac-(RADA)4-CONH2 and ac-(RADA)4-CONH2-DOX, due to the interaction of CUR with the hydrophobic domains of the peptide nanofibers as confirmed by CLSM. In vitro release studies showed a complete DOX release from ac-(RADA)4-CONH2 within 4 days and a prolonged release for ac-(RADA)4-CONH2-CUR over 20 days. An increased cellular uptake and a higher cytotoxic effect were observed for ac-(RADA)4-CONH2-DOX, compared with DOX solution. Higher levels of early apoptosis were observed for the cells treated with the ac-(RADA)4-CONH2-CUR, compared to CUR solution. CONCLUSIONS: The current findings highlight the potential utility of the in-situ depot forming ac-(RADA)4-CONH2 hydrogel for the local delivery of both water soluble and insoluble chemotherapeutic drugs.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Curcumina/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Nanofibras/química , Peptídeos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacocinética , Curcumina/farmacologia , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Hidrogéis/química , Nanofibras/ultraestrutura
15.
Plant Signal Behav ; 7(1): 16-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22301959

RESUMO

Aberrant microtubule organization has been recently recorded in dividing root cells of fra2 and lue1 p60-katanin Arabidopsis thaliana mutants. Here, we report similar defects in the bot1 and ktn1-2 mutants of the same plant, proposing that they constitute a consistent phenotype of p60-katanin mutants. In addition, we show that the Targeting Protein for Xklp2 (TPX2) protein co-localizes with microtubules on the surface of prophase nuclei of the mutants, probably participating in multipolar spindle assembly. As microtubule organization defects are not observed in metaphase/anaphase spindles and initiating phragmoplasts, we also discuss the putative association of the observed aberrations with the nuclear envelope and we emphasize on the mechanism of bipolar metaphase spindle organization in the mutants. It seems that chromosome-mediated spindle assembly, probably minimally dependent on microtubule severing by p60-katanin, dominates after nuclear envelope breakdown, restoring bipolarity. 


Assuntos
Adenosina Trifosfatases/metabolismo , Microtúbulos/metabolismo , Mutação , Raízes de Plantas/citologia , Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/fisiologia , Katanina , Proteínas Associadas aos Microtúbulos/fisiologia , Fuso Acromático
16.
Cytoskeleton (Hoboken) ; 68(7): 401-13, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21721142

RESUMO

Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it in dividing plant cells. Therefore, microtubule organization was studied in detail by immunofluorescence in dividing root cells of fra2 and lue1 katanin mutants of Arabidopsis thaliana. In both, early preprophase bands consisted of poorly aligned microtubules, prophase spindles were multipolar, and the microtubules of expanding phragmoplasts were elongated, bended toward and connected to the surface of daughter nuclei. Accordingly, severing by katanin seems to be necessary for the proper organization of these microtubule arrays. In both fra2 and lue1, metaphase/anaphase spindles and initiating phragmoplasts exhibited typical organization. However, they were obliquely oriented more frequently than in the wild type. It is proposed that this oblique orientation may be due to prophase spindle multipolarity and results in a failure of the cell plate to follow the predetermined division plane, during cytokinesis, producing oblique cell walls in the roots of both mutants. It is therefore concluded that, like in animal cells, katanin is important for plant cell division, influencing the organization of several microtubule arrays. Moreover, failure in microtubule severing indirectly affects the orientation of the division plane.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Divisão Celular/fisiologia , Microtúbulos/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular/genética , Katanina , Microtúbulos/genética , Raízes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA