RESUMO
Psoriasis is a systemic inflammatory disease with an increased risk of atherosclerotic events and premature cardiovascular disease. S100A7, A8/A9, and A12 are protein complexes that are produced by activated neutrophils, monocytes, and keratinocytes in psoriasis. Lipid-rich necrotic core (LRNC) is a high-risk coronary plaque feature previously found to be associated with cardiovascular risk factors and psoriasis severity. LRNC can decrease with biologic therapy, but how this occurs remains unknown. We investigated the relationship between S100 proteins, LRNC, and biologic therapy in psoriasis. S100A8/A9 associated with LRNC in fully adjusted models (ß = 0.27, P = 0.009; n = 125 patients with psoriasis with available coronary computed tomography angiography scans; LRNC analyses; and serum S100A7, S100A8, S100A9, S100A12, and S100A8/A9 levels). At 1 year, in patients receiving biologic therapy (36 of 73 patients had 1-year coronary computed tomography angiography scans available), a 79% reduction in S100A8/A9 levels (â172 [â291.7 to 26.4] vs. â29.9 [â137.9 to 50.5]; P = 0.04) and a 0.6 mm2 reduction in average LRNC area (0.04 [â0.48 to 0.77] vs. â0.56 [â1.8 to 0.13]; P = 0.02) were noted. These results highlight the potential role of S100A8/A9 in the development of high-risk coronary plaque in psoriasis.
Assuntos
Psoríase , Proteína S100A12 , Humanos , Biomarcadores , Calgranulina A , Calgranulina B , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Proteínas S100 , Estudos de Coortes , Terapia Biológica , Necrose , LipídeosRESUMO
Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that ß-catenin phosphorylated at Y489 (p-ß-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/ß-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/ß-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-ß-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-ß-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/ß-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury.