Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet Reg Health West Pac ; 45: 101035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445260

RESUMO

Background: In French Polynesia, hepatitis B virus (HBV) infection appears as a major risk factor for hepatocellular carcinoma (HCC), which detection rate in the Austral archipelago is among the highest in the world. Through a nationally representative cross-sectional survey of the adult population, this study aimed at assessing the prevalence of HBV, but also hepatitis C virus (HCV), and hepatitis delta virus (HDV). Methods: A total of 1942 blood samples from participants aged 18-69 years were tested for anti-HBc, anti-HBs, HBsAg, anti-HCV IgG, and HDV RNA. Complete genome sequencing of detected HBV strains was performed. Findings: Among participants, 315/1834, 582/1834, 33/1834, 0/1857, and 0/33 tested positive for anti-HBc, anti-HBs, HBsAg, anti-HCV IgG, and HDV RNA, respectively. The population prevalence of HBsAg was estimated at 1.0% (95% CI: 0.6-1.7). All HBsAg carriers were born in French Polynesia before vaccination at birth became mandatory. In multivariate analyses, identified factors associated with HBsAg carriage included: the archipelago of residence (p < 0.0001), age (p < 0.0001), and education level (p = 0.0077). HBV genotypes B, C, and F were detected. Interpretation: French Polynesia has a low endemicity level of HBV and its population may be considered at low risk for HCV and HDV infection. However, prevalence of HBsAg was found concerning in Austral (3.8%; 95% CI: 1.9-7.5) and Marquesas (6.5%; 95% CI: 3.8-11) archipelagoes. In the Austral archipelago, the presence of genotype C may account for the elevated rate of HCC. Our findings warrant more efforts to improve access to detection, prevention and care to people born before the systematic vaccination policy application, and residing in higher-risk areas, to achieve HBV elimination in French Polynesia. Funding: Research Delegation of French Polynesia.

2.
PLoS One ; 16(9): e0256877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473769

RESUMO

In French Polynesia, the first case of SARS-CoV-2 infection was detected on March 10th, 2020, in a resident returning from France. Between March 28th and July 14th, international air traffic was interrupted and local transmission of SARS-CoV-2 was brought under control, with only 62 cases recorded. The main challenge for reopening the air border without requiring travelers to quarantine on arrival was to limit the risk of re-introducing SARS-CoV-2. Specific measures were implemented, including the obligation for all travelers to have a negative RT-PCR test for SARS-CoV-2 carried out within 3 days before departure, and to perform another RT-PCR testing 4 days after arrival. Because of limitation in available medical staff, travelers were provided a kit allowing self-collection of oral and nasal swabs. In addition to increase our testing capacity, self-collected samples from up to 10 travelers were pooled before RNA extraction and RT-PCR testing. When a pool tested positive, RNA extraction and RT-PCR were performed on each individual sample. We report here the results of COVID-19 surveillance (COV-CHECK PORINETIA) conducted between July 15th, 2020, and February 15th, 2021, in travelers using self-collection and pooling approaches. We tested 5,982 pools comprising 59,490 individual samples, and detected 273 (0.46%) travelers positive for SARS-CoV-2. A mean difference of 1.17 Ct (CI 95% 0.93-1.41) was found between positive individual samples and pools (N = 50), probably related to the volume of samples used for RNA extraction (200 µL versus 50 µL, respectively). Retrospective testing of positive samples self-collected from October 20th, 2020, using variants-specific amplification kit and spike gene sequencing, found at least 6 residents infected by the Alpha variant. Self-collection and pooling approaches allowed large-scale screening for SARS-CoV-2 using less human, material and financial resources. Moreover, this strategy allowed detecting the introduction of SARS-CoV-2 variants of concern in French Polynesia.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Programas de Rastreamento/métodos , Vigilância da População/métodos , Manejo de Espécimes/métodos , Viagem , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Epidemias/prevenção & controle , França/epidemiologia , Humanos , Polinésia/epidemiologia , Estudos Prospectivos , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Manejo de Espécimes/instrumentação
3.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA