Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309258

RESUMO

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Assuntos
Encéfalo , Microglia , Axônios , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Macrófagos/fisiologia , Microglia/patologia , Morfogênese
2.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30396997

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that are key mediators of excitatory neurotransmission and synaptic plasticity throughout the central nervous system. They form massive heterotetrameric complexes endowed with unique allosteric capacity provided by eight extracellular clamshell-like domains arranged as two superimposed layers. Despite an increasing number of full-length NMDAR structures, how these domains cooperate in an intact receptor to control its activity remains poorly understood. Here, combining single-molecule and macroscopic electrophysiological recordings, cysteine biochemistry, and in silico analysis, we identify a rolling motion at a yet unexplored interface between the two constitute dimers in the agonist-binding domain (ABD) layer as a key structural determinant in NMDAR activation and allosteric modulation. This rotation acts as a gating switch that tunes channel opening depending on the conformation of the membrane-distal N-terminal domain (NTD) layer. Remarkably, receptors locked in a rolled state display "super-activity" and resistance to NTD-mediated allosteric modulators. Our work unveils how NMDAR domains move in a concerted manner to transduce long-range conformational changes between layers and command receptor channel activity.


Assuntos
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Simulação por Computador , Cisteína/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais , Imagem Individual de Molécula , Xenopus laevis
3.
Nat Commun ; 9(1): 4769, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425244

RESUMO

GluN3A and GluN3B are glycine-binding subunits belonging to the NMDA receptor (NMDAR) family that can assemble with the GluN1 subunit to form unconventional receptors activated by glycine alone. Functional characterization of GluN1/GluN3 NMDARs has been difficult. Here, we uncover two modalities that have transformative properties on GluN1/GluN3A receptors. First, we identify a compound, CGP-78608, which greatly enhances GluN1/GluN3A responses, converting small and rapidly desensitizing currents into large and stable responses. Second, we show that an endogenous GluN3A disulfide bond endows GluN1/GluN3A receptors with distinct redox modulation, profoundly affecting agonist sensitivity and gating kinetics. Under reducing conditions, ambient glycine is sufficient to generate tonic receptor activation. Finally, using CGP-78608 on P8-P12 mouse hippocampal slices, we demonstrate that excitatory glycine GluN1/GluN3A NMDARs are functionally expressed in native neurons, at least in the juvenile brain. Our work opens new perspectives on the exploration of excitatory glycine receptors in brain function and development.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Receptores de Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Dissulfetos , Relação Dose-Resposta a Droga , Glicina/metabolismo , Glicina/farmacologia , Células HEK293 , Hipocampo , Humanos , Cinética , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/efeitos dos fármacos , Fenômenos Fisiológicos do Sistema Nervoso , Oócitos , Peptídeos/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Proteínas Recombinantes , Xenopus
5.
Nat Neurosci ; 15(10): 1374-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22922783

RESUMO

Auxiliary subunits regulate the trafficking, localization or gating kinetics of voltage- and ligand-gated ion channels by associating tightly and specifically with pore-forming subunits. However, no auxiliary subunits have been identified for members of the Cys-loop receptor superfamily. Here we identify MOLO-1, a positive regulator of levamisole-sensitive acetylcholine receptors (L-AChRs) at the Caenorhabditis elegans neuromuscular junction. MOLO-1 is a one-pass transmembrane protein that contains a single extracellular globular domain-the TPM domain, found in bacteria, plants and invertebrates, including nonvertebrate chordates. Loss of MOLO-1 impairs locomotion and renders worms resistant to the anthelmintic drug levamisole. In molo-1 mutants, L-AChR-dependent synaptic transmission is reduced by half, while the number and localization of receptors at synapses remain unchanged. In a heterologous expression system, MOLO-1 physically interacts with L-AChRs and directly enhances channel gating without affecting unitary conductance. The identification of MOLO-1 expands the mechanisms for generating functional and pharmacological diversity in the Cys-loop superfamily.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/agonistas , Canais Iônicos/fisiologia , Subunidades Proteicas/metabolismo , Receptores Colinérgicos/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Agonistas Colinérgicos/farmacologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Resistência a Medicamentos/genética , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/genética , Levamisol/farmacologia , Locomoção , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Mutação , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Subunidades Proteicas/genética , Receptores Colinérgicos/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-22233560

RESUMO

Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Receptores de Glutamato/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , Receptores de Glutamato/química , Receptores de Glutamato/genética
7.
Mol Pharmacol ; 75(1): 60-74, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18923063

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors endowed with unique pharmacological and functional properties. In particular, their high permeability to calcium ions confers on NMDARs a central role in triggering long term changes in synaptic strength. Under excitotoxic pathological conditions, such as those occurring during brain trauma, stroke, or Parkinson's or Huntington's diseases, calcium influx through NMDAR channels can also lead to neuronal injury. This argues for the use of NMDAR antagonists as potential therapeutic agents. To date, the most promising NMDAR antagonists are ifenprodil and derivatives, compounds that act as noncompetitive inhibitors selective for NMDARs containing the NR2B subunit. Recent studies have identified the large N-terminal domain (NTD) of NR2B as the region controlling ifenprodil sensitivity of NMDARs. We present here a detailed characterization of the ifenprodil binding site using both experimental and computational approaches. 3D homology modeling reveals that ifenprodil fits well in a closed cleft conformation of the NRB NTD; however, ifenprodil can adopt either of two possible binding orientations of opposite direction. By studying the effects of cleft mutations, we show that only the orientation in which the phenyl moiety points deep toward the NTD hinge is functionally relevant. Moreover, based on our model, we identify novel NTD NR2B residues that are crucial for conferring ifenprodil sensitivity and provide functional evidence that these residues directly interact with the ifenprodil molecule. This work provides a general insight into the origin of the subunit-selectivity of NMDAR noncompetitive antagonists and offer clues for the discovery of novel NR2B-selective antagonists.


Assuntos
Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Cisteína/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Feminino , Ácido Glutâmico/química , Glicina/química , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Camundongos , Microinjeções , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Oócitos/metabolismo , Técnicas de Patch-Clamp , Piperidinas , Plasmídeos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Padrões de Referência , Homologia de Sequência de Aminoácidos , Temperatura , Xenopus laevis , Zinco/farmacologia
8.
Bioorg Med Chem Lett ; 18(9): 2765-70, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18434149

RESUMO

To prepare thiol-reactive ifenprodil derivatives designed as potential probes for cysteine-substituted NR2B containing NMDA receptors, electrophilic centers were introduced in different areas of the ifenprodil structure. Intermediates and final compounds were evaluated by binding studies and by electrophysiology to determine the structural requirements for their selectivity. The reactive compounds were further tested for their stability and for their reactivity in model reactions; some were found suitable as structural probes to investigate the binding site and the docking mode of ifenprodil in the NR2B subunit.


Assuntos
Antagonistas Adrenérgicos alfa/farmacologia , Marcadores de Afinidade/química , Encéfalo/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Antagonistas Adrenérgicos alfa/síntese química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Cisteína/química , Eletrofisiologia , Potenciais da Membrana/fisiologia , Modelos Químicos , Piperidinas/síntese química , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA