Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 23466-23477, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37982378

RESUMO

Heart failure is a serious condition that results from the extensive loss of specialized cardiac muscle cells called cardiomyocytes (CMs), typically caused by myocardial infarction (MI). Messenger RNA (mRNA) therapeutics are emerging as a very promising gene medicine for regenerative cardiac therapy. To date, lipid nanoparticles (LNPs) represent the most clinically advanced mRNA delivery platform. Yet, their delivery efficiency has been limited by their endosomal entrapment after endocytosis. Previously, we demonstrated that a pair of complementary coiled-coil peptides (CPE4/CPK4) triggered efficient fusion between liposomes and cells, bypassing endosomal entrapment and resulting in efficient drug delivery. Here, we modified mRNA-LNPs with the fusogenic coiled-coil peptides and demonstrated efficient mRNA delivery to difficult-to-transfect induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs). As proof of in vivo applicability of these fusogenic LNPs, local administration via intramyocardial injection led to significantly enhanced mRNA delivery and concomitant protein expression. This represents the successful application of the fusogenic coiled-coil peptides to improve mRNA-LNPs transfection in the heart and provides the potential for the advanced development of effective regenerative therapies for heart failure.


Assuntos
Insuficiência Cardíaca , Nanopartículas , Humanos , Lipossomos , RNA Mensageiro/genética , Peptídeos
2.
Nat Chem ; 15(7): 980-987, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169984

RESUMO

Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug-nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that the metallophilic interaction between cyclometalated palladium complexes generates supramolecular nanostructures in living mice that have a long circulation time (over 12 h) and efficient tumour accumulation rate (up to 10.2% of the injected dose per gram) in a skin melanoma tumour model. Green light activation leads to efficient tumour destruction due to the type I photodynamic effect generated by the self-assembled palladium complexes, as demonstrated in vitro by an up to 96-fold cytotoxicity increase upon irradiation. This work demonstrates that metallophilic interactions are well suited to generating stable supramolecular nanotherapeutics in vivo with exceptional tumour-targeting properties.


Assuntos
Antineoplásicos , Nanopartículas , Nanoestruturas , Neoplasias Cutâneas , Animais , Camundongos , Paládio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química
3.
Motriz (Online) ; 28: e10220009522, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1406021

RESUMO

Abstract Aim: The study aimed to investigate the effects of the somatotype components on handball. Methods: The sample consisted of 60 elite junior handball players. Somatotype was evaluated using the Heath & Carter method. The kinetic performance trials of the handball athletes were running speed performance over 5 m 10 m and 20 m sprints, sit and reach, standing long jump (SLJ), ball velocity, and maximum aerobic power. For the data analyses, we used Pearson correlation and multiple linear regression. Results: The endomorphic component correlated positive with all three sprint times (5 m, 10 m και 30 m sprints) (r = 0.315, p = 0.014; r = 0.367, p = 0.004; r = 0.358, p = 0.005 respectively) while negative with SLJ (r = -0.418, p = 0.001) και maximum aerobic power (r = -0.322, p = 0.012). The mesomorphic component had a positive correlation with ball velocity (r = 0.260, p = 0.045) and negative relation with SLJ (r = -0.261, p = 0.044). The ectomorphic component exhibited a negative correlation only with ball velocity (r = -0.260, p = 0.045). The ordinary least square regression models found that endomorphy and ectomorphy were prognostic factors and predicted worse performance in all of the examined motor performance indices except ball velocity and 5 m sprint, while mesomorphy was a predictor of worse performance in SLJ. Conclusions: In conclusion, according to the findings of this study, somatotype components play an important role in performance-related parameters.

4.
Adv Mater ; 33(37): e2008613, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338371

RESUMO

Many drug delivery systems end up in the lysosome because they are built from covalent or kinetically inert supramolecular bonds. To reach other organelles, nanoparticles hence need to either be made from a kinetically labile interaction that allows re-assembly of the nanoparticles inside the cell following endocytic uptake, or, be taken up by a mechanism that short-circuits the classical endocytosis pathway. In this work, the intracellular fate of nanorods that self-assemble via the Pt…Pt interaction of cyclometalated platinum(II) compounds, is studied. These deep-red emissive nanostructures (638 nm excitation, ≈700 nm emission) are stabilized by proteins in cell medium. Once in contact with cancer cells, they cross the cell membrane via dynamin- and clathrin-dependent endocytosis. However, time-dependent confocal colocalization and cellular electron microscopy demonstrate that they directly move to mitochondria without passing by the lysosomes. Altogether, this study suggests that Pt…Pt interaction is strong enough to generate emissive, aggregated nanoparticles inside cells, but labile enough to allow these nanostructures to reach the mitochondria without being trapped in the lysosomes. These findings open new venues to the development of bioimaging nanoplatforms based on the Pt…Pt interaction.


Assuntos
Complexos de Coordenação/química , Nanoestruturas/química , Platina/química , Linhagem Celular Tumoral , Complexos de Coordenação/metabolismo , Endocitose , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Mitocôndrias/química , Mitocôndrias/metabolismo , Teoria Quântica
5.
Nat Commun ; 11(1): 3638, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686667

RESUMO

Surface charge plays a fundamental role in determining the fate of a nanoparticle, and any encapsulated contents, in vivo. Herein, we describe, and visualise in real time, light-triggered switching of liposome surface charge, from neutral to cationic, in situ and in vivo (embryonic zebrafish). Prior to light activation, intravenously administered liposomes, composed of just two lipid reagents, freely circulate and successfully evade innate immune cells present in the fish. Upon in situ irradiation and surface charge switching, however, liposomes rapidly adsorb to, and are taken up by, endothelial cells and/or are phagocytosed by blood resident macrophages. Coupling complete external control of nanoparticle targeting together with the intracellular delivery of encapsulated (and membrane impermeable) cargos, these compositionally simple liposomes are proof that advanced nanoparticle function in vivo does not require increased design complexity but rather a thorough understanding of the fundamental nano-bio interactions involved.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Nanopartículas/química , Animais , Cátions/metabolismo , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Macrófagos , Membranas/metabolismo , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Fagocitose , Peixe-Zebra
6.
J Am Chem Soc ; 142(23): 10383-10399, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32378894

RESUMO

Enhanced passive diffusion is usually considered to be the primary cause of the enhanced cellular uptake of cyclometalated drugs because cyclometalation lowers the charge of a metal complex and increases its lipophilicity. However, in this work, monocationic cyclometalated palladium complexes [1]OAc (N^N^C^N) and [2]OAc (N^N^N^C) were found to self-assemble, in aqueous solutions, into soluble supramolecular nanorods, while their tetrapyridyl bicationic analogue [3](OAc)2 (N^N^N^N) dissolved as isolated molecules. These nanorods formed via metallophilic Pd···Pd interaction and π-π stacking and were stabilized in the cell medium by serum proteins, in the absence of which the nanorods precipitated. In cell cultures, these protein-stabilized self-assembled nanorods were responsible for the improved cellular uptake of the cyclometalated compounds, which took place via endocytosis (i.e., an active uptake pathway). In addition to triggering self-assembly, cyclometalation in [1]OAc also led to dramatically enhanced photodynamic properties under blue light irradiation. These combined penetration and photodynamic properties were observed in multicellular tumor spheroids and in a mice tumor xenograft, demonstrating that protein-stabilized nanoaggregation of cyclometalated drugs such as [1]OAc also allows efficient cellular uptake in 3D tumor models. Overall, serum proteins appear to be a major element in drug design because they strongly influence the size and bioavailability of supramolecular drug aggregates and hence their efficacy in vitro and in vivo.


Assuntos
Proteínas Sanguíneas/química , Nanotubos/química , Compostos Organometálicos/química , Paládio/química , Fármacos Fotossensibilizantes/química , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA