Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(6): e39569, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22724026

RESUMO

BACKGROUND: Chloroquine (CQ)-resistant Plasmodium falciparum malaria has been a global health catastrophe, yet much about the CQ resistance (CQR) mechanism remains unclear. Hallmarks of the CQR phenotype include reduced accumulation of protonated CQ as a weak base in the digestive vacuole of the erythrocyte-stage parasite, and chemosensitization of CQ-resistant (but not CQ-sensitive) P. falciparum by agents such as verapamil. Mutations in the P. falciparum CQR transporter (PfCRT) confer CQR; particularly important among these mutations is the charge-loss substitution K→T at position 76. Dictyostelium discoideum transformed with mutant PfCRT expresses key features of CQR including reduced drug accumulation and verapamil chemosensitization. METHODOLOGY AND FINDINGS: We describe the isolation and characterization of PfCRT-transformed, hematin-free vesicles from D. discoideum cells. These vesicles permit assessments of drug accumulation, pH, and membrane potential that are difficult or impossible with hematin-containing digestive vacuoles from P. falciparum-infected erythrocytes. Mutant PfCRT-transformed D. discoideum vesicles show features of the CQR phenotype, and manipulations of vesicle membrane potential by agents including ionophores produce large changes of CQ accumulation that are dissociated from vesicular pH. PfCRT in its native or mutant form blunts the ability of valinomycin to reduce CQ accumulation in transformed vesicles and decreases the ability of K(+) to reverse membrane potential hyperpolarization caused by valinomycin treatment. CONCLUSION: Isolated vesicles from mutant-PfCRT-transformed D. discoideum exhibit features of the CQR phenotype, consistent with evidence that the drug resistance mechanism operates at the P. falciparum digestive vacuole membrane in malaria. Membrane potential apart from pH has a major effect on the PfCRT-mediated CQR phenotype of D. discoideum vesicles. These results support a model of PfCRT as an electrochemical potential-driven transporter in the drug/metabolite superfamily that (appropriately mutated) acts as a saturable simple carrier for the facilitated diffusion of protonated CQ.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Dictyostelium/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trifosfato de Adenosina/metabolismo , Amônia/farmacologia , Animais , Antimaláricos/farmacologia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Linhagem Celular Transformada , Cloroquina/metabolismo , Cloroquina/farmacologia , Vesículas Citoplasmáticas/efeitos dos fármacos , Dictyostelium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ionóforos/farmacologia , Macrolídeos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Fenótipo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Potássio/metabolismo , Valinomicina/farmacologia , Verapamil/farmacologia
2.
Mol Biochem Parasitol ; 144(2): 167-76, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16183150

RESUMO

A Plasmodium falciparum gene closely linked to the chloroquine resistance locus encodes PfCG2, a predicted 320-330kDa protein. In the parasitized erythrocyte, PfCG2 expression rises sharply in the trophozoite stage and is detected in electron-dense patches along the parasitophorous vacuolar membrane (PVM), in the cytoplasm and in the digestive vacuole (DV). Results of extraction and partitioning experiments show that PfCG2 is a peripheral membrane protein. Exposure of trophozoite-infected erythrocytes to trypsin-containing buffer after streptolysin O permeabilization indicates that PfCG2 is exposed to the erythrocyte cytosol at the outer face of the PVM. PfCG2 is highly susceptible to hydrolysis by aspartic and cysteine proteases and shows dose-dependent accumulation in the presence of protease inhibitors. These results suggest that PfCG2 is delivered from the outside face of the PVM to the DV, where it is broken down by parasite proteases. PfCG2 interacts with erythrocyte cytoplasm and may be associated with processes of hemoglobin uptake and digestion by erythrocytic-stage parasites.


Assuntos
Hemoglobinas/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Ácido Aspártico Endopeptidases/farmacologia , Membrana Celular/metabolismo , Cisteína Endopeptidases/farmacologia , Citosol/metabolismo , Resistência a Medicamentos , Eritrócitos/química , Eritrócitos/citologia , Eritrócitos/parasitologia , Humanos , Estágios do Ciclo de Vida , Microscopia Eletrônica , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/efeitos dos fármacos , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA