Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35745603

RESUMO

Ganoderma lucidum or Lingzhi is a fungus species widely known as a traditional medicine. Exploring the beneficial peptides by hydrolysis using pepsin and trypsin has been extensively performed to identify new bioactive natural products. A multifunctional peptide that expresses potential scavenging activity and tyrosinase inhibition is valuable in therapeutic and cosmetic applications. This study aimed to identify and investigate the effects of a novel multifunctional peptide from Lingzhi on the melanogenic enzymes in melanoma cells by a targeted-proteomics approach. The multifunctional peptide was de novo sequenced by LC-MS/MS to be NH2-PVRSSNCA-CO2H (octapeptide). This sequence was chemically synthesized by solid-phase peptide synthesis (SPPS). The antioxidant ability of the synthesized octapeptide was measured by the DPPH, ABTS, and FRAP assays. The results showed that the peptide exhibited an antioxidant activity equal to 0.121 ± 0.01 mg equivalent to ascorbic acid, 0.173 ± 0.03 mg equivalent to gallic acid, and 2.21 ± 0.23 mM equivalent to FeSO4, respectively, which is comparable to these well-known antioxidants. The proteomics approach identified a total of 5804 proteins and several pathways involved in the effects of the octapeptide in melanoma cells. Targeted proteomics revealed three specific proteins associated with pigmentation including Rab29, Dct, and Tyrp1. The Rab29 and Dct were upregulated whereas Tyrp1 was downregulated in the octapeptide treatment group. These findings could be used in the understanding of the molecular functions of the multifunctional octapeptide on melanogenic enzymes, supporting its potential as a therapeutic and cosmetic ingredient.

2.
Contrast Media Mol Imaging ; 2020: 8877862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33456403

RESUMO

In cell therapy, contrast agents T1 and T2 are both needed for the labeling and tracking of transplanted stem cells over extended periods of time through magnetic resonance imaging (MRI). Importantly, the metal-quercetin complex via coordination chemistry has been studied extensively for biomedical applications, such as anticancer therapies and imaging probes. Herein, we report on the synthesis, characterization, and labeling of the iron (III)-quercetin complex, "IronQ," in circulating proangiogenic cells (CACs) and also explore tracking via the use of a clinical 1.5 Tesla (T) MRI scanner. Moreover, IronQ had a paramagnetic T1 positive contrast agent property with a saturation magnetization of 0.155 emu/g at 1.0 T and longitudinal relaxivity (r1) values of 2.29 and 3.70 mM-1s-1 at 1.5 T for water and human plasma, respectively. Surprisingly, IronQ was able to promote CAC growth in conventional cell culture systems without the addition of specific growth factors. Increasing dosages of IronQ from 0 to 200 µg/mL led to higher CAC uptake, and maximum labeling time was achieved in 10 days. The accumulated IronQ in CACs was measured by two methodologies, an inductively coupled plasma optical emission spectrometry (ICP-EOS) and T1-weighted MRI. In our research, we confirmed that IronQ has excellent dual functions with the use of an imaging probe for MRI. IronQ can also act as a stimulating agent by favoring circulating proangiogenic cell differentiation. Optimistically, IronQ is considered beneficial for alternative labeling and in the tracking of circulation proangiogenic cells and/or other stem cells in applications of cell therapy through noninvasive magnetic resonance imaging in both preclinical and clinical settings.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste/química , Ferro/química , Leucócitos Mononucleares/citologia , Imageamento por Ressonância Magnética/métodos , Neovascularização Fisiológica , Quercetina/química , Diferenciação Celular , Proliferação de Células , Humanos , Imagens de Fantasmas , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA