Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
iScience ; 25(10): 105077, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36164654

RESUMO

APOBEC3 family members are cytidine deaminases catalyzing conversion of cytidine to uracil. Many studies have established a link between APOBEC3 expression and cancer development and progression, especially APOBEC3A (A3A) and APOBEC3B (A3B). Preclinical studies with human papillomavirus positive (HPV+) head and neck squamous cell carcinoma (HNSCC) and clinical trial specimens revealed induction of A3B, but not A3A expression after demethylation. We examined the kinetic features of the cytidine deaminase activity for full length A3B and found that longer substrates and a purine at -2 position favored by A3B, whereas A3A prefers shorter substrates and an adenine or thymine at -2 position. The importance and biological significance of A3B catalytic activity rather than A3A and a preference for purine at the -2 position was also established in HPV+ HNSCCs. Our study explored factors influencing formation of A3A and A3B-related cancer mutations that are essential for understanding APOBEC3-related carcinogenesis and facilitating drug discovery.

3.
Biophys J ; 113(5): 974-977, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28803626

RESUMO

A group of small molecules that stabilize proteins against high hydrostatic pressure has been classified as piezolytes, a subset of stabilizing cosolutes. This distinction would imply that piezolytes counteract the effects of high hydrostatic pressure through effects on the volumetric properties of the protein. The purpose of this study was to determine if cosolutes proposed to be piezolytes have an effect on the volumetric properties of proteins through direct experimental measurements of volume changes upon unfolding of model proteins lysozyme and ribonuclease A, in solutions containing varying cosolute concentrations. Solutions containing the proposed piezolytes glutamate, sarcosine, and betaine were used, as well as solutions containing the denaturants guanidinium hydrochloride and urea. Changes in thermostability were monitored using differential scanning calorimetry whereas changes in volume were monitored using pressure perturbation calorimetry. Our findings indicate that increasing stabilizing cosolute concentration increases the stability and transition temperature of the protein, but does not change the temperature dependence of volume changes upon unfolding. The results suggest that the pressure stability of a protein in solution is not directly affected by the presence of these proposed piezolytes, and so they cannot be granted this distinction.


Assuntos
Pressão Hidrostática , Modelos Teóricos , Estabilidade Proteica , Betaína/química , Calorimetria , Ácido Glutâmico/química , Muramidase/química , Ribonuclease Pancreático/química , Sarcosina/química , Soluções , Temperatura , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA