Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Oncol ; 64(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426621

RESUMO

Tumor malignant cells are characterized by dysregulation of mitochondrial bioenergetics due to the 'Warburg effect'. In the present study, this metabolic imbalance was explored as a potential target for novel cancer chemotherapy. Imatinib (IM) downregulates the expression levels of SCΟ2 and FRATAXIN (FXN) genes involved in the heme­dependent cytochrome c oxidase biosynthesis and assembly pathway in human erythroleukemic IM­sensitive K­562 chronic myeloid leukemia cells (K­562). In the present study, it was investigated whether the treatment of cancer cells with IM (an inhibitor of oxidative phosphorylation) separately, or together with dichloroacetate (DCA) (an inhibitor of glycolysis), can inhibit cell proliferation or cause death. Human K­562 and IM­chemoresistant K­562 chronic myeloid leukemia cells (K­562R), as well as human colorectal carcinoma cells HCT­116 (+/+p53) and (­/­p53, with double TP53 knock-in disruptions), were employed. Treatments of these cells with either IM (1 or 2 µM) and/or DCA (4 mΜ) were also assessed for the levels of several process biomarkers including SCO2, FXN, lactate dehydrogenase A, glyceraldehyde­3­phosphate dehydrogenase, pyruvate kinase M2, hypoxia inducing factor­1a, heme oxygenase­1, NF­κB, stem cell factor and vascular endothelial growth factor via western blot analysis. Computational network biology models were also applied to reveal the connections between the ten proteins examined. Combination treatment of IM with DCA caused extensive cell death (>75%) in K­562 and considerable (>45%) in HCT­116 (+/+p53) cultures, but less in K­562R and HCT­116 (­/­p53), with the latter deficient in full length p53 protein. Such treatment, markedly reduced reactive oxygen species levels, as measured by flow­cytometry, in K­562 cells and affected the oxidative phosphorylation and glycolytic biomarkers in all lines examined. These findings indicated, that targeting of cancer mitochondrial bioenergetics with such a combination treatment was very effective, although chemoresistance to IM in leukemia and the absence of a full length p53 in colorectal cells affected its impact.


Assuntos
Neoplasias Colorretais , Leucemia Eritroblástica Aguda , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteína Supressora de Tumor p53/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Apoptose , Linhagem Celular Tumoral , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Metabolismo Energético , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Biomarcadores/metabolismo , Células K562 , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células
2.
Curr Issues Mol Biol ; 45(11): 9181-9214, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998753

RESUMO

Over 100 innovative in vitro transcribed (IVT)-mRNAs are presently undergoing clinical trials, with a projected substantial impact on the pharmaceutical market in the near future. Τhe idea behind this is that after the successful cellular internalization of IVT-mRNAs, they are subsequently translated into proteins with therapeutic or prophylactic relevance. Simultaneously, cancer immunotherapy employs diverse strategies to mobilize the immune system in the battle against cancer. Therefore, in this review, the fundamental principles of IVT-mRNA to its recruitment in cancer immunotherapy, are discussed and analyzed. More specifically, this review paper focuses on the development of mRNA vaccines, the exploitation of neoantigens, as well as Chimeric Antigen Receptor (CAR) T-Cells, showcasing their clinical applications and the ongoing trials for the development of next-generation immunotherapeutics. Furthermore, this study investigates the synergistic potential of combining the CAR immunotherapy and the IVT-mRNAs by introducing our research group novel, patented delivery method that utilizes the Protein Transduction Domain (PTD) technology to transduce the IVT-mRNAs encoding the CAR of interest into the Natural Killer (NK)-92 cells, highlighting the potential for enhancing the CAR NK cell potency, efficiency, and bioenergetics. While IVT-mRNA technology brings exciting progress to cancer immunotherapy, several challenges and limitations must be acknowledged, such as safety, toxicity, and delivery issues. This comprehensive exploration of IVT-mRNA technology, in line with its applications in cancer therapeutics, offers valuable insights into the opportunities and challenges in the evolving landscape of cancer immunotherapy, setting the stage for future advancements in the field.

3.
Biomedicines ; 10(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36359405

RESUMO

Chimeric antigen receptor (CAR) immunotherapy includes the genetic modification of immune cells to carry such a receptor and, thus, recognize cancer cell surface antigens. Viral transfection is currently the preferred method, but it carries the risk of off-target mutagenicity. Other transfection platforms have thus been proposed, such the in vitro transcribed (IVT)-mRNAs. In this study, we exploited our innovative, patented delivery platform to produce protein transduction domain (PTD)-IVT-mRNAs for the expression of CAR on NK-92 cells. CAR T1E-engineered NK-92 cells, harboring the sequence of T1E single-chain fragment variant (scFv) to recognize the ErbB receptor, bearing either CD28 or 4-1BB as co-stimulatory signaling domains, were prepared and assessed for their effectiveness in two different ErbB(+) cancer cell lines. Our results showed that the PTD-IVT-mRNA of CAR was safely transduced and expressed into NK-92 cells. CAR T1E-engineered NK-92 cells provoked high levels of cell death (25-33%) as effector cells against both HSC-3 (oral squamous carcinoma) and MCF-7 (breast metastatic adenocarcinoma) human cells in the co-incubation assays. In conclusion, the application of our novel PTD-IVT-mRNA delivery platform to NK-92 cells gave promising results towards future CAR immunotherapy approaches.

4.
Biomolecules ; 12(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35204719

RESUMO

Human mesenchymal stem cells (MSC) are multipotent stem cells, which are isolated from various sources. Currently, there is a worldwide interest for dental MSC to be used against neurodegenerative diseases, since they derive from the neural crest and express embryonic stem cell markers. This fact prompted us to explore their potential for neural trans-differentiation in culture. We employed all-trans-retinoic acid (ATRA) and 2-(3-ethylureido)-6-methylpyridine (UDP-4) to induce neural differentiation of human MSC from the dental apical papilla (SCAP). The SCAP were exposed to either agent separately and assessed for proliferation, viability, morphology, and gene expression of the following neural-specific markers: neuron-specific enolase (ENO2), neurofibromin 1 (NF1), choline acetyltransferase (CHAT), tyrosine hydroxylase (TH), and the vesicular GABA transporter (SLC32A1). They were also assessed for the expression of glial fibrillary acidic protein (GFAP) and neuronal nuclear antigen (NeuN) by immunofluorescence. ATRA or UDP-4 treatment inhibited the cell growth and promoted limited cell death, but to a different extent. The addition of the neuroprotective agent recombinant human erythropoietin-alpha (rhEPO-α) enhanced the UDP-4-inducing capacity for more than three weeks. ATRA or UDP-4 treatment significantly upregulated ENO2 and NF1 expression, indicating neuronal differentiation. Moreover, the ATRA treatment significantly induced the upregulation of the GABAergic-specific SLC32A1, while the UDP-4 treatment led to the significant upregulation of the adrenergic-specific TH. The UDP-4 treatment induced the expression of NeuN and GFAP after four and three weeks, respectively, while the ATRA-treatment did not. Our findings indicate that SCAP can be differentiated into neural-like cells after treatment with ATRA or UDP-4 by exhibiting a disparate pattern of differentiation. Therefore, UDP-4 is suggested here as a new potent neural-differentiation-inducing compound, which, when combined with rhEPO-α, could lay the foundation for robust stem-cell-based therapies of neurodegeneration.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Humanos , Piridinas , Tretinoína/metabolismo , Tretinoína/farmacologia , Ureia/análogos & derivados , Ureia/metabolismo
5.
Anesthesiology ; 131(6): 1239-1253, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31567366

RESUMO

BACKGROUND: Functional brain connectivity studies can provide important information about changes in brain-state dynamics during general anesthesia. In adults, γ-aminobutyric acid-mediated agents disrupt integration of information from local to the whole-brain scale. Beginning around 3 to 4 months postnatal age, γ-aminobutyric acid-mediated anesthetics such as sevoflurane generate α-electroencephalography oscillations. In previous studies of sevoflurane-anesthetized infants 0 to 3.9 months of age, α-oscillations were absent, and power spectra did not distinguish between anesthetized and emergence from anesthesia conditions. Few studies detailing functional connectivity during general anesthesia in infants exist. This study's aim was to identify changes in functional connectivity of the infant brain during anesthesia. METHODS: A retrospective cohort study was performed using multichannel electroencephalograph recordings of 20 infants aged 0 to 3.9 months old who underwent sevoflurane anesthesia for elective surgery. Whole-brain functional connectivity was evaluated during maintenance of a surgical state of anesthesia and during emergence from anesthesia. Functional connectivity was represented as networks, and network efficiency indices (including complexity and modularity) were computed at the sensor and source levels. RESULTS: Sevoflurane decreased functional connectivity at the δ-frequency (1 to 4 Hz) in infants 0 to 3.9 months old when comparing anesthesia with emergence. At the sensor level, complexity decreased during anesthesia, showing less whole-brain integration with prominent alterations in the connectivity of frontal and parietal sensors (median difference, 0.0293; 95% CI, -0.0016 to 0.0397). At the source level, similar results were observed (median difference, 0.0201; 95% CI, -0.0025 to 0.0482) with prominent alterations in the connectivity between default-mode and frontoparietal regions. Anesthesia resulted in fragmented modules as modularity increased at the sensor (median difference, 0.0562; 95% CI, 0.0048 to 0.1298) and source (median difference, 0.0548; 95% CI, -0.0040 to 0.1074) levels. CONCLUSIONS: Sevoflurane is associated with decreased capacity for efficient information transfer in the infant brain. Such findings strengthen the hypothesis that conscious processing relies on an efficient system of integrated information transfer across the whole brain.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Encéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Ritmo Delta/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Sevoflurano/administração & dosagem , Encéfalo/fisiologia , Estudos de Coortes , Estado de Consciência/fisiologia , Ritmo Delta/fisiologia , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Rede Nervosa/fisiologia , Estudos Retrospectivos , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia
6.
J Biotechnol ; 306: 47-53, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541666

RESUMO

Olive oil mill wastewater (OMW) is a significant pollutant in the Mediterranean region. In the present contribution, we showed clearly that microorganisms (microalgae and OMW-microflora) activated the biodegradation of OMW-phenolics and produced a high yield of hydrogen (H2). In a closed incubation system, the appropriate adjustment of OMW-pH leads to the establishment of anoxic conditions through the oxygen consumption of microorganisms during the first incubation day. The biodegradation procedure of OMW-phenolics needs oxygen. Therefore, after the establishment of anoxic conditions, the biodegradation stopped and the activation of hydrogenases started, leading to a continuous high yield of bio-hydrogen production. If the cultivation system re-opened (oxygen enrichment), the OMW-phenolic biodegradation (oxygen dependent process) started again and therefore the detoxified OMW could be used for further biotechnological applications (production of biodiesel, bioalcohols, organic fertilizers, etc.). Apart from the environmental compatibility of the method and the sustainability of such a combinational application (OMW detoxification and high yield of hydrogen production) in the context of a green biotechnology approach, the cost/profit ratio appears to be particularly tempting and guarantees its widespread use in the near future. The present contribution proposes a solution to a major environmental problem by upgrading its solution to a high-value product.


Assuntos
Hidrogênio/metabolismo , Azeite de Oliva , Fenóis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Concentração de Íons de Hidrogênio , Hidrogenase/metabolismo , Azeite de Oliva/química , Azeite de Oliva/metabolismo , Oxigênio/metabolismo , Fenóis/análise , Águas Residuárias/química , Águas Residuárias/microbiologia
7.
Zygote ; 25(2): 183-189, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28264754

RESUMO

The purpose of this study was to investigate the possible molecular pathways through which ghrelin accelerates in vitro oocyte maturation. Bovine cumulus-oocyte complexes (COCs), after 18 or 24 h maturation in the absence or the presence of 800 pg ml-1 of acylated ghrelin were either assessed for nuclear maturation or underwent in vitro fertilization in standard media and putative zygotes were cultured in vitro for 8 days. In a subset of COCs the levels of phosphorylated Akt1 and ERK1/2 (MAPK1/3) were assessed at the 0th, 6th, 10th, 18th and 24th hours of in vitro maturation (IVM). At 18 and 24 h no difference existed in the proportion of matured oocytes in the ghrelin-treated group, while in the control group more (P < 0.05) matured oocyte were found at 24 h. Oocyte maturation for 24 h in the presence of ghrelin resulted in substantially reduced (P < 0.05) blastocyst yield(16.3%) in comparison with that obtained after 18 h (30.0%) or to both control groups (29.3% and 26.9%, for 18 and 24 h in maturation, respectively). Ghrelin-treated oocytes expressed lower Akt1 phosphorylation rate at the 10th hour of IVM, and higher ERK1/2 at the 6th and 10th hours of IVM compared with controls. In cumulus cells, at the 18th and 24th hours of IVM Akt1 phosphorylation rate was higher in ghrelin-treated oocytes. Our results imply that ghrelin acts in a different time-dependent manner on bovine oocytes and cumulus cells modulating Akt1 and ERK1/2 phosphorylation, which brings about acceleration of the oocyte maturation process.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Bovinos , Células Cultivadas , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Feminino , Oócitos/citologia , Oócitos/efeitos dos fármacos
8.
Cell Physiol Biochem ; 20(6): 995-1006, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17982282

RESUMO

HIF-1alpha is the inducible subunit of the dimeric transcription factor HIF-1 (Hypoxia Inducible Factor 1). It is induced by hypoxia and hypoxia-mimetics in most cell types, as well as non-hypoxic signals such as growth factors, cytokines and oncogenes, often in a cell specific manner. HIF-1 is present in virtually all cells of higher eukaryotes and its function is of great biomedical relevance since it is highly involved in development, tumor progression and tissue ischemia. Intracellular signaling to HIF-1alpha, as well as its further action, involves its participation in numerous protein complexes. Using the yeast two-hybrid system we have identified MgcRacGAP (male germ cell Rac GTPase Activating Protein) as a HIF-1alpha interacting protein. The MgcRacGAP protein is a regulator of Rho proteins, which are principally involved in cytoskeletal organization. We have verified specific binding of HIF-1alpha and MgcRacGAP in vitro and in vivo in mammalian cells. We have additionally shown that MgcRacGAP overexpression inhibits HIF-1alpha transcriptional activity, without lowering HIF-1alpha protein levels, or altering its subcellular localization. Moreover, this inhibition is dependent on the MgcRacGAP domain that interacts with HIF-1alpha. In conclusion, our findings demonstrate that HIF-1alpha function is negatively affected by its interaction with MgcRacGAP.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transcrição Gênica , Animais , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Luciferases/metabolismo , Camundongos , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/citologia , Frações Subcelulares , Termodinâmica , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Oncol Res ; 15(1): 21-37, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15839303

RESUMO

We have shown previously that murine erythroleukemia (MEL) and human neuroectodermal RD/TE-671 cells are induced to differentiate by ureido derivatives of pyridine (UDPs) and may contain inducer binding protein(s). In the present study, we prepared radiolabeled [3H]UDP [2-(3-ethylureido)-6-[3H]-acetylaminopyridine] as ligand and investigated whether it interacts selectively with novel binding proteins. MEL and RD/TE-671 cells, incubated with the inducer [3H]UDP and subsequently fractionated, yielded a radiolabeled postmitochondrial soluble fraction containing the [3H]UDP-protein complex. We purified the UDP binding protein by using UDP-sepharose affinity chromatography, gel filtration, and SDS-PAGE electrophoresis and analyzed its structure. The data presented here indicate for the first time that the inducer UDP interacts with a 38,333 +/- 30 Da binding protein(s) (p38), of unknown function, in both cell lines. Microsequencing and sequence alignment search revealed that the p38 protein(s) contains at least two homologous domains, one being part of ABC-type transporters and another found in the Wingless-type (Wnt) proteins. Kinetic analysis revealed that the p38 forms a relatively stable protein complex with [3H]UDP that accumulates within the cytosol and nucleus of MEL cells during the precommitment period. This complex, however, decays later on after commitment to erythroid maturation has been initiated. De novo protein and mRNA synthesis is needed for the UDP-p38 complex to form, as shown by the use of metabolic inhibitors. Purified p38 was used to develop an anti-p38 polyclonal serum, and Western blot analysis revealed that the level of p38 was quite similar in both UDP-inducible and -resistant MEL subclones that we developed. Although only a portion of the primary structure of the p38 is known from microsequencing, the mechanism by which the UDP-p38 complex contributes to induction of differentiation in both UDP-responsive mouse MEL and human RD/TE-671 cells is discussed.


Assuntos
Aminopiridinas/metabolismo , Diferenciação Celular , Leucemia Eritroblástica Aguda/patologia , Tumores Neuroectodérmicos/patologia , Animais , Sítios de Ligação , Citosol , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Cinética , Ligantes , Camundongos , Complexos Multiproteicos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Pharmacol Ther ; 100(3): 257-90, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14652113

RESUMO

Despite the remarkable progress achieved in the treatment of leukemias over the last several years, many problems (multidrug resistance [MDR], cellular heterogeneity, heterogeneous molecular abnormalities, karyotypic instability, and lack of selective action of antineoplastic agents) still remain. The recent progress in tumor molecular biology has revealed that leukemias are likely to arise from disruption of differentiation of early hematopoietic progenitors that fail to give birth to cell lineage restricted phenotypes. Evidence supporting such mechanisms has been derived from studying bone marrow leukemiogenesis and analyzing differentiation of leukemic cell lines in culture that serve as models of erythroleukemic (murine erythroleukemia [MEL] and human leukemia [K562] cells) and myeloid (human promyelocytic leukemia [HL-60] cells) cell maturation. This paper reviews the current concepts of differentiation, the chemical/pharmacological inducing agents developed thus far, and the mechanisms involved in initiation of leukemic cell differentiation. Emphasis was given on commitment and the cell lineage transcriptional factors as key regulators of terminal differentiation as well as on membrane-mediated events and signaling pathways involved in hematopoietic cell differentiation. The developmental program of MEL cells was presented in considerable depth. It is quite remarkable that the erythrocytic maturation of these cells is orchestrated into specific subprograms and gene expression patterns, suggesting that leukemic cell differentiation represents a highly coordinated set of events that lead to irreversible growth arrest and expression of cell lineage restricted phenotypes. In MEL and other leukemic cells, differentiation appears to be accompanied by differentiation-dependent apoptosis (DDA), an event that can be exploited chemotherapeutically. The mechanisms by which the chemical inducers promote differentiation of leukemic cells have been discussed.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Diferenciação Celular , Leucemia , Animais , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia/tratamento farmacológico , Leucemia/genética , Leucemia/metabolismo , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/genética , Camundongos
11.
Oncol Res ; 13(6-10): 339-46, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12725523

RESUMO

Hematopoietic stem cells (HSCs) or early progenitors respond to external stimuli in bone marrow and differentiate into cell-restricted lineages of blood cells of limited life span. In leukemias, however, early hematopoietic progenitors self-renew themselves, fail to respond to differentiation signals, and do not undergo programmed cell death (apoptosis). The basic mechanisms of differentiation and apoptosis of leukemia cells have been the long-term objective of our work. By exploiting widely studied murine and human leukemic cell systems as models of hematopoietic cell differentiation, we explored the mechanisms by which pharmaceutical agents initiate differentiation in leukemic systems. In this article, we present the developmental program of MEL cells with emphasis given on the role of commitment to terminal maturation. Commitment is initiated via inducer-receptor-mediated processes and leads to discrete patterns of expression of several genes that contribute to growth arrest at the G1 phase, expression of differentiated phenotype, and differentiation-dependent apoptosis (DDA). Overall, MEL erythroid cell differentiation represents a developmental program with a highly coordinated set of processes that is "triggered" by an inducer and functions via a network of genes and proteins interacting with each other harmonically to give birth to lineage-restricted phenotype.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Leucemia Eritroblástica Aguda/genética , Leucemia Experimental/genética , Animais , Apoptose/genética , Divisão Celular , Linhagem da Célula , Células Clonais/citologia , Células Clonais/patologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Leucemia Eritroblástica Aguda/fisiopatologia , Camundongos
12.
Biochem Pharmacol ; 63(5): 1009-17, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11911854

RESUMO

Murine erythroleukemia (MEL) cells provide a valuable model system for uncovering the cellular and molecular mechanisms of differentiation of proerythroid cells in culture. In order to characterize genes and gene expression patterns unique for erythropoiesis, we: (i) cloned and sequenced a 226bp cDNA encoding portion of the 3'-end B22 subunit of mitochondrial NADH-ubiquinone oxidoreductase (complex I); (ii) assessed the steady state level of RNA transcripts encoded by B22, cytochrome c oxidase (COX II, COX IV) and c-myc genes in MEL cells undergoing terminal differentiation induced by dimethylsulfoxide (DMSO) and/or 2-(3-ethylureido)-6-methylpyridine; and (iii) investigated whether the gene expression patterns of B22, COX IV and c-myc genes seen in differentiating cells are affected by N(6)-methyladenosine, an inhibitor of commitment and RNA methylation. These studies have indicated: (a) c-myc, COX II and COX IV genes exhibited biphasic expression pattern; a transient accumulation of c-myc, COX II and COX IV mRNAs was followed by a decline after 36hr incubation with DMSO and/or 2-(3-ethylureido)-6-methylpyridine, (b) B22 gene expression declined progressively in differentiated cells, (c) blockade of differentiation of MEL cells with N(6)-methyladenosine failed to prevent the transient accumulation of c-myc, COX II and COX IV mRNAs, but abrogated the irreversible expression of all four genes. These findings indicated that B22, c-myc, COX II and COX IV genes are gradually repressed in terminally differentiating MEL cells presumably via different patterns of expression (gradual vs. biphasic). Overall, these results showed that erythroid maturation of MEL cells is accompanied by transcriptional inactivation (or repression) of at least three genes encoding mitochondrial enzyme subunits involved in cell respiration.


Assuntos
Diferenciação Celular/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Inativação Gênica , Leucemia Eritroblástica Aguda/genética , NADH NADPH Oxirredutases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Senescência Celular/genética , Complexo I de Transporte de Elétrons , Regulação Neoplásica da Expressão Gênica , Leucemia Eritroblástica Aguda/patologia , Camundongos , Dados de Sequência Molecular , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA