Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 203(2): 355-67, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18688601

RESUMO

RATIONALE: Adenosine receptors are involved in cocaine and methamphetamine discrimination and exposure to caffeine can affect behavioral effects of nicotine in rats. OBJECTIVES: Here we investigated the relative involvement of adenosine A(1) and A(2A) receptors in nicotine, cocaine, and methamphetamine discrimination, before and/or during chronic caffeine exposure. MATERIALS AND METHODS: The nonselective adenosine receptor antagonist caffeine, the A(1)-receptor antagonist cyclopentyltheophylline (CPT), and the A(2A)-receptor antagonist MSX-3 were evaluated in rats trained to discriminate 0.4 mg/kg nicotine from saline under a fixed-ratio schedule of food delivery. Effects of adenosine receptor antagonists were then compared in rats discriminating nicotine, methamphetamine, or cocaine from saline during chronic caffeine exposure in their drinking water. RESULTS: Caffeine, CPT, and MSX-3 partially generalized to nicotine and shifted nicotine dose-response curves leftwards. During chronic caffeine exposure, however, all three ligands failed to generalize to nicotine and failed to shift nicotine dose-response curves. In previous experiments, CPT and MSX-3 partially generalized to methamphetamine and cocaine and shifted dose-response curves leftwards. In the present experiments, CPT neither generalized nor shifted dose-response curves for methamphetamine or cocaine during chronic caffeine exposure. However, MSX-3 partially generalized to both psychostimulants and shifted their dose-response curves leftwards. Caffeine partially generalized to cocaine, but not methamphetamine, and shifted both dose-response curves leftwards. CONCLUSIONS: Both adenosine A(1) and A(2A) receptors are capable of modulating the discriminative-stimulus effects of nicotine. Chronic caffeine exposure produces complete tolerance to both A(1)- and A(2A)-mediated effects in nicotine-trained rats. In contrast, chronic caffeine exposure produces tolerance to adenosine A(1)-mediated, but not A(2A)-mediated, effects in methamphetamine- and cocaine-trained rats.


Assuntos
Cafeína/farmacologia , Cocaína/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Metanfetamina/farmacologia , Nicotina/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Agonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Cafeína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
2.
Psychopharmacology (Berl) ; 179(3): 576-86, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15696333

RESUMO

RATIONALE: Caffeine is a non-selective adenosine receptor antagonist in vitro, but involvement of different adenosine receptor subtypes, particularly adenosine A1 and A 2A receptors, in the central effects of caffeine remains a matter of debate. OBJECTIVE: Investigate the role of adenosine A1 and A 2A receptors in the discriminative-stimulus effects of caffeine. METHODS: Rats were trained to discriminate an injection of 30 mg/kg (i.p.) caffeine from saline. The selective A1 receptor antagonist CPT, the selective A 2A receptor antagonist MSX-3 and the non-selective adenosine receptor antagonist DMPX were assessed for their ability to produce caffeine-like discriminative effects. The ability of CPT, MSX-3, the A1 receptor agonist CPA and the A 2A receptor agonist CGS21680 to reduce the discriminative effects of caffeine was also tested. Radioligand binding experiments with membrane preparations from rat striatum and transfected mammalian cell lines were performed to characterize binding affinity profiles of the different adenosine antagonists used in the present study (caffeine, DMPX, CPT and MSX-3) in relation to all known adenosine receptors (A1, A 2A, A 2B, A3). RESULTS: DMPX and CPT, but not MSX-3, produced significant caffeine-like discriminative effects. MSX-3, but not CPT, markedly reduced the discriminative effects of caffeine and the caffeine-like discriminative effects of CPT. Furthermore, the A1 receptor agonist CPA, but not the A 2A agonist CGS21680, reduced caffeine's discriminative effects. CONCLUSIONS: Adenosine A1 receptor blockade is involved in the discriminative-stimulus effects of behaviorally relevant doses of caffeine; A 2A receptor blockade does not play a central role in caffeine's discriminative effects and counteracts the A1 receptor-mediated discriminative-stimulus effects of caffeine.


Assuntos
Antagonistas do Receptor A1 de Adenosina , Cafeína/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Receptor A1 de Adenosina/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Cafeína/química , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Tempo de Reação
3.
J Pharmacol Exp Ther ; 307(3): 977-86, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14557381

RESUMO

Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the discriminative-stimulus effects of methamphetamine and cocaine.


Assuntos
Adenosina/análogos & derivados , Adenosina/fisiologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Metanfetamina/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Teofilina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Agonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Condicionamento Operante/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Generalização Psicológica , Masculino , Fenetilaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Teofilina/farmacologia , Xantinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA