Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nat Med ; 30(8): 2199-2207, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830991

RESUMO

An unmet need exists for patients with relapsed/refractory (R/R) follicular lymphoma (FL) and high-risk disease features, such as progression of disease within 24 months (POD24) from first-line immunochemotherapy or disease refractory to both CD20-targeting agent and alkylator (double refractory), due to no established standard of care and poor outcomes. Chimeric antigen receptor (CAR) T cell therapy is an option in R/R FL after two or more lines of prior systemic therapy, but there is no consensus on its optimal timing in the disease course of FL, and there are no data in second-line (2L) treatment of patients with high-risk features. Lisocabtagene maraleucel (liso-cel) is an autologous, CD19-directed, 4-1BB CAR T cell product. The phase 2 TRANSCEND FL study evaluated liso-cel in patients with R/R FL, including 2L patients who all had POD24 from diagnosis after treatment with anti-CD20 antibody and alkylator ≤6 months of FL diagnosis and/or met modified Groupe d'Etude des Lymphomes Folliculaires criteria. Primary/key secondary endpoints were independent review committee-assessed overall response rate (ORR)/complete response (CR) rate. At data cutoff, 130 patients had received liso-cel (median follow-up, 18.9 months). Primary/key secondary endpoints were met. In third-line or later FL (n = 101), ORR was 97% (95% confidence interval (CI): 91.6‒99.4), and CR rate was 94% (95% CI: 87.5‒97.8). In 2L FL (n = 23), ORR was 96% (95% CI: 78.1‒99.9); all responders achieved CR. Cytokine release syndrome occurred in 58% of patients (grade ≥3, 1%); neurological events occurred in 15% of patients (grade ≥3, 2%). Liso-cel demonstrated efficacy and safety in patients with R/R FL, including high-risk 2L FL. ClinicalTrials.gov identifier: NCT04245839 .


Assuntos
Imunoterapia Adotiva , Linfoma Folicular , Humanos , Linfoma Folicular/terapia , Linfoma Folicular/imunologia , Linfoma Folicular/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Adulto , Antígenos CD19/imunologia , Antígenos CD19/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico
3.
FEBS Lett ; 589(18): 2312-9, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26226417

RESUMO

Actin-bundling Arabidopsis LIM proteins are subdivided into two subfamilies differing in their pH sensitivity. Widely-expressed WLIMs are active under low and high physiologically-relevant pH conditions, whereas pollen-enriched PLIMs are inactivated by pH values above 6.8. By a domain swapping approach we identified the C-terminal (Ct) domain of PLIMs as the domain responsible for pH responsiveness. Remarkably, this domain conferred pH sensitivity to LIM proteins, when provided "in trans" (i.e., as a single, independent, peptide), indicating that it operates through the interaction with another domain. An acidic 6xc-Myc peptide functionally mimicked the Ct domain of PLIMs and efficiently inhibited LIM actin bundling activity under high pH conditions. Together, our data suggest a model where PLIMs are regulated by an intermolecular interaction between their acidic Ct domain and another, yet unidentified, domain.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Proteínas com Domínio LIM/genética , Dados de Sequência Molecular , Pólen/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/química , Deleção de Sequência
4.
J Biol Chem ; 287(39): 32535-45, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22854966

RESUMO

The Elongator complex is composed of 6 subunits (Elp1-Elp6) and promotes RNAPII transcript elongation through histone acetylation in the nucleus as well as tRNA modification in the cytoplasm. This acetyltransferase complex directly or indirectly regulates numerous biological processes ranging from exocytosis and resistance to heat shock in yeast to cell migration and neuronal differentiation in higher eukaryotes. The identity of human ELP1 through ELP4 has been reported but human ELP5 and ELP6 have remained uncharacterized. Here, we report that DERP6 (ELP5) and C3ORF75 (ELP6) encode these subunits of human Elongator. We further investigated the importance and function of these two subunits by a combination of biochemical analysis and cellular assays. Our results show that DERP6/ELP5 is required for the integrity of Elongator and directly connects ELP3 to ELP4. Importantly, the migration and tumorigenicity of melanoma-derived cells are significantly decreased upon Elongator depletion through ELP1 or ELP3. Strikingly, DERP6/ELP5 and C3ORF75/ELP6-depleted melanoma cells have similar defects, further supporting the idea that DERP6/ELP5 and C3ORF75/ELP6 are essential for Elongator function. Together, our data identify DERP6/ELP5 and C3ORF75/ELP6 as key players for migration, invasion and tumorigenicity of melanoma cells, as integral subunits of Elongator.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Melanoma/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Deleção de Genes , Células HEK293 , Histona Acetiltransferases , Humanos , Melanoma/genética , Melanoma/patologia , Complexos Multiproteicos/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
5.
Plant Signal Behav ; 3(5): 320-1, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19841658

RESUMO

The LIM domain is defined as a protein-protein interaction module involved in the regulation of diverse cellular processes including gene expression and cytoskeleton organization. We have recently shown that the tobacco WLIM1, a two LIM domain-containing protein, is able to bind to, stabilize and bundle actin filaments, suggesting that it participates to the regulation of actin cytoskeleton structure and dynamics. In the December issue of the Journal of Biological Chemistry we report a domain analysis that specifically ascribes the actin-related activities of WLIM1 to its two LIM domains. Results suggest that LIM domains function synergistically in the full-length protein to achieve optimal activities. Here we briefly summarize relevant data regarding the actin-related properties/functions of two LIM domain-containing proteins in plants and animals. In addition, we provide further evidence of cooperative effects between LIM domains by transiently expressing a chimeric multicopy WLIM1 protein in BY2 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA