Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7058, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873165

RESUMO

L-Lactate, traditionally considered a metabolic waste product, is increasingly recognized as an important intercellular energy currency in mammals. To enable investigations of the emerging roles of intercellular shuttling of L-lactate, we now report an intensiometric green fluorescent genetically encoded biosensor for extracellular L-lactate. This biosensor, designated eLACCO1.1, enables cellular resolution imaging of extracellular L-lactate in cultured mammalian cells and brain tissue.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Proteínas de Fluorescência Verde/metabolismo , Ácido Láctico/análise , Proteínas Periplásmicas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Ácido Láctico/metabolismo , Microscopia de Fluorescência , Proteínas Periplásmicas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Reprodutibilidade dos Testes
2.
Front Neural Circuits ; 14: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760252

RESUMO

As the technological hurdles are overcome and optogenetic techniques advance to have more control over neurons, therapies based on these approaches will begin to emerge in the clinic. Here, we consider the technical challenges surrounding the transition of this breakthrough technology from an investigative tool to a true therapeutic avenue. The emerging strategies and remaining tasks surrounding genetically encoded molecules which respond to light as well as the vehicles required to deliver them are discussed.The use of optogenetics in humans would represent a completely new paradigm in medicine and would be associated with unprecedented technical considerations. To be applied for stimulation of neurons in humans, an ideal optogenetic tool would need to be non-immunogenic, highly sensitive, and activatable with red light or near-infrared light (to maximize light penetration while minimizing photodamage). To enable sophisticated levels of neuronal control, the combined use of optogenetic actuators and indicators could enable closed-loop all-optical neuromodulation. Such systems would introduce additional challenges related to spectral orthogonality between actuator and indicator, the need for decision making computational algorithms and requirements for large gene cassettes. As in any gene therapy, the therapeutic efficiency of optogenetics will rely on vector delivery and expression in the appropriate cell type. Although viral vectors such as those based on AAVs are showing great potential in human trials, barriers to their general use remain, including immune responses, delivery/transport, and liver clearance. Limitations associated with the gene cassette size which can be packaged in currently approved vectors also need to be addressed.


Assuntos
Técnicas de Transferência de Genes , Luz , Neurônios , Opsinas/genética , Optogenética/métodos , Dependovirus/imunologia , Marcação de Genes , Humanos , Opsinas/imunologia
3.
Mol Cell Biol ; 31(6): 1145-59, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21220515

RESUMO

Protein quality control is a balance between chaperone-assisted folding and removal of misfolded proteins from the endoplasmic reticulum (ER). Cell-based assays have been used to identify key players of the dislocation machinery, including members of the Derlin family. We generated conditional knockout mice to examine the in vivo role of Derlin-2, a component that nucleates cellular dislocation machinery. In most Derlin-2-deficient tissues, we found constitutive upregulation of ER chaperones and IRE-1-mediated induction of the unfolded protein response. The IRE-1/XBP-1 pathway is required for development of highly secretory cells, particularly plasma cells and hepatocytes. However, B lymphocyte development and antibody secretion were normal in the absence of Derlin-2. Likewise, hepatocyte function was unaffected by liver-specific deletion of Derlin-2. Whole-body deletion of Derlin-2 results in perinatal death. The few mice that survived to adulthood all developed skeletal dysplasia, likely caused by defects in collagen matrix protein secretion by costal chondrocytes.


Assuntos
Condrócitos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Transporte Proteico , Resposta a Proteínas não Dobradas , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Células Cultivadas , Condrócitos/citologia , Embrião de Mamíferos/anormalidades , Feminino , Morte Fetal/genética , Fibroblastos/metabolismo , Hepatócitos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Regulação para Cima
4.
Methods ; 35(4): 338-47, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15804605

RESUMO

Newly synthesized polypeptides entering the endoplasmic reticulum (ER) encounter a large array of molecular chaperones and folding factors that facilitate proper folding as well as assess folding status, retaining non-native proteins within the ER. Calnexin (CNX), an ER membrane protein, and its soluble homologue, calreticulin (CRT), are two important molecular chaperones that contribute to both processes. They are highly unusual chaperones in that they act as lectins, binding the Asn-linked oligosaccharides of newly synthesized glycoproteins, as well as recognizing the polypeptide segments of glycoproteins. Furthermore, they associate with ERp57, a thiol oxidoreductase, that is thought to enhance the oxidative folding of glycoproteins bound to CNX/CRT. These characteristics of CNX and CRT as well as their mode of action have been elucidated though the use of multiple in vitro and in vivo approaches. This chapter will focus on the description of a number of in vitro assays that have been used to characterize the lectin and ERp57-binding functions of CNX/CRT and also their abilities to act as molecular chaperones to suppress protein aggregation. In addition, we will describe insect and mammalian expression systems in which major histocompatibility complex class I molecules are used as model glycoprotein substrates for CNX and CRT. These systems have been valuable in assessing folding and quality control events in vivo that are influenced by CNX or CRT as well as in characterizing the spectrum of substrates that are recognized by these chaperones.


Assuntos
Calnexina/fisiologia , Calreticulina/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Isomerases/metabolismo , Dobramento de Proteína , Animais , Bactérias/genética , Bactérias/metabolismo , Bioensaio , Calnexina/genética , Calreticulina/genética , Drosophila/genética , Drosophila/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA