Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biomed Pharmacother ; 163: 114717, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37435722

RESUMO

Despite several promising candidates, there is a paucity of drug treatments available for patients suffering from retinal diseases. An important reason for this is the lack of suitable delivery systems that can achieve sufficiently high drug uptake in the retina and its photoreceptors. A promising and versatile method for drug delivery to specific cell types involves transporter-targeted liposomes, i.e., liposomes surface-coated with substrates for transporter proteins highly expressed on the target cell. We identified strong lactate transporter (monocarboxylate transporter, MCT) expression on photoreceptors as a potential target for drug delivery vehicles. To evaluate MCT suitability for drug targeting, we used PEG-coated liposomes and conjugated these with different monocarboxylates, including lactate, pyruvate, and cysteine. Monocarboxylate-conjugated and dye-loaded liposomes were tested on both human-derived cell-lines and murine retinal explant cultures. We found that liposomes conjugated with pyruvate consistently displayed higher cell uptake than unconjugated liposomes or liposomes conjugated with lactate or cysteine. Pharmacological inhibition of MCT1 and MCT2 reduced internalization, suggesting an MCT-dependent uptake mechanism. Notably, pyruvate-conjugated liposomes loaded with the drug candidate CN04 reduced photoreceptor cell death in the murine rd1 retinal degeneration model while free drug solutions could not achieve the same therapeutic effect. Our study thus highlights pyruvate-conjugated liposomes as a promising system for drug delivery to retinal photoreceptors, as well as other neuronal cell types displaying high expression of MCT-type proteins.


Assuntos
Lipossomos , Ácido Pirúvico , Humanos , Animais , Camundongos , Cisteína , Sistemas de Liberação de Medicamentos , Células Fotorreceptoras de Vertebrados , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Polietilenoglicóis
2.
Adv Exp Med Biol ; 1415: 467-471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440073

RESUMO

To successfully deliver intracellular compounds to retinal cells, a delivery system based on purified lipids, self-assembled into synthetic vesicles called liposomes, can be used. Liposomes have the potential to target distinct tissues and cells in the body by molecular targeting moieties conjugated to their surface. To enhance liposome delivery to neurons, glutathione has formerly been used as targeting moiety. It is unclear whether and how the glutathione conjugation improves the liposome-induced uptake to cells within the retina. To explore this, glutathione-liposomes were prepared and loaded with a fluorescent tracer, which was added to organotypic retinal explant cultures derived from mice. The fluorescence in the tissue was analyzed from histological sections using fluorescent microscopy. Comparisons were done with liposomes without a targeting device and cysteine-conjugated liposomes. A significant increase (p ≤ 0.05) of fluorescent signal was observed from the inner nuclear layer of retinas exposed to glutathione-conjugated liposomes. Qualitatively, this might be attributed to the accumulation of glutathione-liposomes in the retinal inner vasculature, but further studies are needed for verification.


Assuntos
Lipossomos , Retina , Camundongos , Animais , Glutationa , Neurônios , Sistemas de Liberação de Medicamentos
3.
Biomolecules ; 12(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35327647

RESUMO

Inherited retinal degenerations (IRDs) are a group of blinding diseases, typically involving a progressive loss of photoreceptors. The IRD pathology is often based on an accumulation of cGMP in photoreceptors and associated with the excessive activation of calpain and poly (ADP-ribose) polymerase (PARP). Inhibitors of calpain or PARP have shown promise in preventing photoreceptor cell death, yet the relationship between these enzymes remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type and IRD-mutant mice were treated with inhibitors specific for calpain, PARP, and voltage-gated Ca2+ channels (VGCCs). The outcomes were assessed using in situ activity assays for calpain and PARP and immunostaining for activated calpain-2, poly (ADP-ribose), and cGMP, as well as the TUNEL assay for cell death detection. The IRD models included the Pde6b-mutant rd1 mouse and rd1*Cngb1-/- double-mutant mice, which lack the beta subunit of the rod cyclic nucleotide-gated (CNG) channel and are partially protected from rd1 degeneration. We confirmed that an inhibition of either calpain or PARP reduces photoreceptor cell death in rd1 retina. However, while the activity of calpain was decreased by the inhibition of PARP, calpain inhibition did not alter the PARP activity. A combination treatment with calpain and PARP inhibitors did not synergistically reduce cell death. In the slow degeneration of rd1*Cngb1-/- double mutant, VGCC inhibition delayed photoreceptor cell death, while PARP inhibition did not. Our results indicate that PARP acts upstream of calpain and that both are part of the same degenerative pathway in Pde6b-dependent photoreceptor degeneration. While PARP activation may be associated with CNG channel activity, calpain activation is linked to VGCC opening. Overall, our data highlights PARP as a target for therapeutic interventions in IRD-type diseases.


Assuntos
Degeneração Retiniana , Difosfato de Adenosina , Animais , Calpaína/genética , Calpaína/metabolismo , Calpaína/uso terapêutico , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/uso terapêutico , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Ribose/uso terapêutico
4.
Br J Ophthalmol ; 106(11): 1567-1572, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34006508

RESUMO

AIMS: To determine long-term safety and efficacy outcomes of a subretinal gene therapy for CNGA3-associated achromatopsia. We present data from an open-label, nonrandomised controlled trial (NCT02610582). METHODS: Details of the study design have been previously described. Briefly, nine patients were treated in three escalating dose groups with subretinal AAV8.CNGA3 gene therapy between November 2015 and October 2016. After the first year, patients were seen on a yearly basis. Safety assessment constituted the primary endpoint. On a secondary level, multiple functional tests were carried out to determine efficacy of the therapy. RESULTS: No adverse or serious adverse events deemed related to the study drug occurred after year 1. Safety of the therapy, as the primary endpoint of this trial, can, therefore, be confirmed. The functional benefits that were noted in the treated eye at year 1 were persistent throughout the following visits at years 2 and 3. While functional improvement in the treated eye reached statistical significance for some secondary endpoints, for most endpoints, this was not the case when the treated eye was compared with the untreated fellow eye. CONCLUSION: The results demonstrate a very good safety profile of the therapy even at the highest dose administered. The small sample size limits the statistical power of efficacy analyses. However, trial results inform on the most promising design and endpoints for future clinical trials. Such trials have to determine whether treatment of younger patients results in greater functional gains by avoiding amblyopia as a potential limiting factor.


Assuntos
Defeitos da Visão Cromática , Humanos , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Terapia Genética/métodos , Retina , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
5.
Front Genet ; 12: 728791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777465

RESUMO

Purpose: The present work investigated changes in the gene expression, molecular mechanisms, and pathogenesis of inherited retinal degeneration (RD) in three different disease models, to identify predictive biomarkers for their varied phenotypes and to provide a better scientific basis for their diagnosis, treatment, and prevention. Methods: Differentially expressed genes (DEGs) between retinal tissue from RD mouse models obtained during the photoreceptor cell death peak period (Pde6b rd1 at post-natal (PN) day 13, Pde6b rd10 at PN23, Prph rd2 at PN29) and retinal tissue from C3H wild-type mice were identified using Illumina high-throughput RNA-sequencing. Co-expression gene modules were identified using a combination of GO and KEGG enrichment analyses and gene co-expression network analysis. CircRNA-miRNA-mRNA network interactions were studied by genome-wide circRNA screening. Results: Pde6b rd1 , Pde6b rd10 , and Prph rd2 mice had 1,926, 3,096, and 375 DEGs, respectively. Genes related to ion channels, stress, inflammatory processes, tumor necrosis factor (TNF) production, and microglial cell activation were up-regulated, while genes related to endoplasmic reticulum regulation, metabolism, and homeostasis were down-regulated. Differential expression of transcription factors and non-coding RNAs generally implicated in other human diseases was detected (e.g., glaucoma, diabetic retinopathy, and inherited retinal degeneration). CircRNA-miRNA-mRNA network analysis indicated that these factors may be involved in photoreceptor cell death. Moreover, excessive cGMP accumulation causes photoreceptor cell death, and cGMP-related genes were generally affected by different pathogenic gene mutations. Conclusion: We screened genes and pathways related to photoreceptor cell death. Additionally, up-stream regulatory factors, such as transcription factors and non-coding RNA and their interaction networks were analyzed. Furthermore, RNAs involved in RD were functionally annotated. Overall, this study lays a foundation for future studies on photoreceptor cell death mechanisms.

6.
JAMA Ophthalmol ; 138(6): 643-651, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32352493

RESUMO

Importance: Achromatopsia linked to variations in the CNGA3 gene is associated with day blindness, poor visual acuity, photophobia, and involuntary eye movements owing to lack of cone photoreceptor function. No treatment is currently available. Objective: To assess safety and vision outcomes of supplemental gene therapy with adeno-associated virus (AAV) encoding CNGA3 (AAV8.CNGA3) in patients with CNGA3-linked achromatopsia. Design, Setting, and Participants: This open-label, exploratory nonrandomized controlled trial tested safety and vision outcomes of gene therapy vector AAV8.CNGA3 administered by subretinal injection at a single center. Nine patients (3 per dose group) with a clinical diagnosis of achromatopsia and confirmed biallelic disease-linked variants in CNGA3 were enrolled between November 5, 2015, and September 22, 2016. Data analysis was performed from June 6, 2017, to March 12, 2018. Intervention: Patients received a single unilateral injection of 1.0 × 1010, 5.0 × 1010, or 1.0 × 1011 total vector genomes of AAV8.CNGA3 and were followed up for a period of 12 months (November 11, 2015, to October 10, 2017). Main Outcomes and Measures: Safety as the primary end point was assessed by clinical examination of ocular inflammation. Systemic safety was assessed by vital signs, routine clinical chemistry testing, and full and differential blood cell counts. Secondary outcomes were change in visual function from baseline in terms of spatial and temporal resolution and chromatic, luminance, and contrast sensitivity throughout a period of 12 months after treatment. Results: Nine patients (mean [SD] age, 39.6 [11.9] years; age range, 24-59 years; 8 [89%] male) were included in the study. Baseline visual acuity letter score (approximate Snellen equivalent) ranged from 34 (20/200) to 49 (20/100), whereas baseline contrast sensitivity log scores ranged from 0.1 to 0.9. All 9 patients underwent surgery and subretinal injection of AAV8.CNGA3 without complications. No substantial safety problems were observed during the 12-month follow-up period. Despite the congenital deprivation of cone photoreceptor-mediated vision in achromatopsia, all 9 treated eyes demonstrated some level of improvement in secondary end points regarding cone function, including mean change in visual acuity of 2.9 letters (95% CI, 1.65-4.13; P = .006, 2-sided t test paired samples). Contrast sensitivity improved by a mean of 0.33 log (95% CI, 0.14-0.51 log; P = .003, 2-sided t test paired samples). Conclusions and Relevance: Subretinal gene therapy with AAV8.CNGA3 was not associated with substantial safety problems and was associated with cone photoreceptor activation in adult patients, as reflected by visual acuity and contrast sensitivity gains. Trial Registration: ClinicalTrials.gov Identifier: NCT02610582.


Assuntos
Defeitos da Visão Cromática/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Terapia Genética/métodos , Células Fotorreceptoras Retinianas Cones/patologia , Acuidade Visual , Adulto , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/fisiopatologia , Eletrorretinografia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Retina , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
7.
Front Cell Neurosci ; 13: 406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551715

RESUMO

Cisplatin remains an indispensable drug for the systemic treatment of many solid tumors. However, a major dose-limiting side-effect is ototoxicity. In some scenarios, such as treatment of germ cell tumors or adjuvant therapy of non-small cell lung cancer, cisplatin cannot be replaced without undue loss of efficacy. Inhibition of polyadenosine diphosphate-ribose polymerase-1 (PARP1), is presently being evaluated as a novel anti-neoplastic principle. Of note, cisplatin-induced PARP1 activation has been related to inner ear cell death. Thus, PARP1 inhibition may exert a protective effect on the inner ear without compromising the antitumor activity of cisplatin. Here, we evaluated PARP1 deficiency and PARP1 pharmacological inhibition as a means to protect the auditory hair cells from cisplatin-mediated ototoxicity. We demonstrate that cisplatin-induced loss of sensory hair cells in the organ of Corti is attenuated in PARP1-deficient cochleae. The PARP inhibitor pirenzepine and its metabolite LS-75 mimicked the protective effect observed in PARP1-deficient cochleae. Moreover, the cytotoxic potential of cisplatin was unchanged by PARP inhibition in two different cancer cell lines. Taken together, the results from our study suggest that the negative side-effects of cisplatin anti-cancer treatment could be alleviated by a PARP inhibition adjunctive therapy.

8.
Adv Exp Med Biol ; 1074: 511-517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721983

RESUMO

In humans cone photoreceptors are responsible for high-resolution colour vision. A variety of retinal diseases can compromise cone viability, and, at present, no satisfactory treatment options are available. Here, we present data towards establishing a reliable, high-throughput assay system that will facilitate the search for cone neuroprotective compounds using the murine-photoreceptor cell line 661 W. To further characterize 661 W cells, a retinal marker study was performed, followed by the induction of cell death using paradigms over-activating cGMP-dependent protein kinase G (PKG). We found that 661 W cells may be used to mimic specific aspects of cone degeneration and may thus be valuable for future compound screening studies.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas do Olho/fisiologia , Ensaios de Triagem em Larga Escala , Fármacos Neuroprotetores/isolamento & purificação , Células Fotorreceptoras Retinianas Cones/enzimologia , Animais , Biomarcadores , Linhagem Celular Tumoral , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/deficiência , Ativação Enzimática/efeitos dos fármacos , Proteínas do Olho/análise , Camundongos , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , Especificidade de Órgãos , Inibidores de Fosfodiesterase/farmacologia , Purinonas/farmacologia , Células Fotorreceptoras Retinianas Cones/citologia
9.
Hum Gene Ther ; 28(12): 1180-1188, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29212391

RESUMO

Retinitis pigmentosa type 43 (RP43) is a blinding disease caused by mutations in the gene for rod phosphodiesterase 6 alpha (PDE6A). The disease process begins with a dysfunction of rod photoreceptors, subsequently followed by a currently untreatable progressive degeneration of the entire outer retina. Aiming at a curative approach via PDE6A gene supplementation, a novel adeno-associated viral (AAV) vector was developed for expression of the human PDE6A cDNA under control of the human rhodopsin promotor (rAAV8.PDE6A). This study assessed the therapeutic efficacy of rAAV8.PDE6A in the Pde6anmf363/nmf363-mutant mouse model of RP43. All mice included in this study were treated with sub-retinal injections of the vector at 2 weeks after birth. The therapeutic effect was monitored at 1 month and 6 months post injection. Biological function of the transgene was assessed in vivo by means of electroretinography. The degree of morphological rescue was investigated both in vivo using optical coherence tomography and ex vivo by immunohistological staining. It was found that the novel rAAV8.PDE6A vector resulted in a stable and efficient expression of PDE6A protein in rod photoreceptors of Pde6anmf363/nmf363 mice following treatment at both the short- and long-term time points. The treatment led to a substantial morphological preservation of outer nuclear layer thickness, rod outer segment structure, and prolonged survival of cone photoreceptors for at least 6 months. Additionally, the ERG analysis confirmed a restoration of retinal function in a group of treated mice. Taken together, this study provides successful proof-of-concept for the cross-species efficacy of the rAAV8.PDE6A vector developed for use in human patients. Importantly, the data show stable expression and rescue effects for a prolonged period of time, raising hope for future translational studies based on this approach.

10.
Sci Rep ; 6: 39537, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004814

RESUMO

The enzyme poly-ADP-ribose-polymerase (PARP) mediates DNA-repair and rearrangements of the nuclear chromatin. Generally, PARP activity is thought to promote cell survival and in recent years a number of PARP inhibitors have been clinically developed for cancer treatment. Paradoxically, PARP activity is also connected to many diseases including the untreatable blinding disease Retinitis Pigmentosa (RP), where PARP activity appears to drive the pathogenesis of photoreceptor loss. We tested the efficacy of three different PARP inhibitors to prevent photoreceptor loss in the rd1 mouse model for RP. In retinal explant cultures in vitro, olaparib had strong and long-lasting photoreceptor neuroprotective capacities. We demonstrated target engagement by showing that olaparib reduced photoreceptor accumulation of poly-ADP-ribosylated proteins. Remarkably, olaparib also reduced accumulation of cyclic-guanosine-monophosphate (cGMP), a characteristic marker for photoreceptor degeneration. Moreover, intravitreal injection of olaparib in rd1 animals diminished PARP activity and increased photoreceptor survival, confirming in vivo neuroprotection. This study affirms the role of PARP in inherited retinal degeneration and for the first time shows that a clinically approved PARP inhibitor can prevent photoreceptor degeneration in an RP model. The wealth of human clinical data available for olaparib highlights its strong potential for a rapid clinical translation into a novel RP treatment.


Assuntos
Fármacos Neuroprotetores/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Animais , Sobrevivência Celular , Cromatina/metabolismo , GMP Cíclico/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C3H , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Coelhos , Degeneração Retiniana/patologia
11.
PLoS One ; 9(11): e112142, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25392995

RESUMO

Cell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2, rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfl1, Rpe65 KO), by investigating metabolic processes relevant for different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major importance. Hallmark features of this pathway are activation of histone deacetylase, poly-ADP-ribose-polymerase, and calpain, as well as accumulation of cyclic guanosine monophosphate and poly-ADP-ribose. Our work thus demonstrates the prevalence of alternative cell death mechanisms in inherited retinal degeneration and provides a rational basis for the design of mutation-independent treatments.


Assuntos
Morte Celular/fisiologia , Degeneração Retiniana/fisiopatologia , Animais , Animais Geneticamente Modificados , Calpaína/fisiologia , Morte Celular/genética , GMP Cíclico/fisiologia , Modelos Animais de Doenças , Histona Desacetilases/fisiologia , Transdução de Sinal Luminoso/genética , Camundongos , Mutação , Poli Adenosina Difosfato Ribose/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Ratos , Degeneração Retiniana/genética
12.
Invest Ophthalmol Vis Sci ; 55(8): 5431-44, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25103259

RESUMO

PURPOSE: Age-related macular degeneration (AMD) is a major leading cause of visual impairment and blindness with no cure currently established. Cell replacement of RPE is discussed as a potential therapy for AMD. Previous studies were performed in animal models with severe limitations in recapitulating the disease progression. In detail, we describe the effect of systemic injection of sodium iodate in the mouse retina. We further evaluate the usefulness of this animal model to analyze cell-specific effects following transplantation of human embryonic stem cell (hESC)-derived RPE cells. METHODS: Morphologic, functional, and behavioral changes following sodium iodate injection were monitored by histology, gene expression analysis, electroretinography, and optokinetic head tracking. Human embryonic stem cell-derived RPE cells were transplanted 1 week after sodium iodate injection and experimental retinae were analyzed 3 weeks later. RESULTS: Injection of sodium iodate caused complete RPE cell loss, photoreceptor degeneration, and altered gene and protein expression in outer and inner nuclear layers. Retinal function was severely affected by day 3 and abolished from day 14. Following transplantation, donor hESC-derived RPE cells formed extensive monolayers that displayed wild-type RPE cell morphology, organization, and function, including phagocytosis of host photoreceptor outer segments. CONCLUSIONS: Systemic injection of sodium iodate has considerable effects on RPE, photoreceptors, and inner nuclear layer neurons, and provides a model to assay reconstitution and maturation of RPE cell transplants. The availability of an RPE-free Bruch's membrane in this model likely allows the unprecedented formation of extensive polarized cell monolayers from donor hESC-derived RPE cell suspensions.


Assuntos
Transplante de Células/métodos , Modelos Animais de Doenças , Doenças Retinianas/terapia , Epitélio Pigmentado da Retina/transplante , Animais , Iodatos/farmacologia , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos
13.
Hum Mol Genet ; 22(3): 508-18, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23100324

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is pathologically characterized by the formation of intranuclear aggregates which contain ataxin-3, the mutated protein in SCA3, in a specific subtype of neurons. It has been proposed that ataxin-3 is cleaved by proteolytic enzymes, in particular by calpains and caspases, eventually leading to the formation of aggregates. In our study, we examined the ability of calpains to cleave ataxin-3 in vitro and in vivo. We demonstrated in cell culture and mouse brain homogenates that cleavage of overexpressed ataxin-3 by calpains and in particular by calpain-2 occur and that polyglutamine expanded ataxin-3 is more sensitive to calpain degradation. Based on these results, we investigated the influence of calpains on the pathogenesis of SCA3 in vivo. For this purpose, we enhanced calpain activity in a SCA3 transgenic mouse model by knocking out the endogenous calpain inhibitor calpastatin. Double-mutant mice demonstrated an aggravated neurological phenotype with an increased number of nuclear aggregates and accelerated neurodegeneration in the cerebellum. This study confirms the critical importance of calcium-dependent calpain-type proteases in the pathogenesis of SCA3 and suggests that the manipulation of the ataxin-3 cleavage pathway and the regulation of intracellular calcium homeostasis may represent novel targets for therapeutic intervention in SCA3.


Assuntos
Calpaína/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ataxina-3 , Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Deleção de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Genótipo , Glicoproteínas/metabolismo , Células HEK293 , Homeostase , Humanos , Imuno-Histoquímica , Doença de Machado-Joseph/metabolismo , Camundongos , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Peptídeos , Fenótipo , Proteínas Repressoras/genética , Fatores de Transcrição/genética
14.
Nat Med ; 18(2): 252-9, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22270721

RESUMO

Noise-induced hearing loss (NIHL) is a global health hazard with considerable pathophysiological and social consequences that has no effective treatment. In the heart, lung and other organs, cyclic guanosine monophosphate (cGMP) facilitates protective processes in response to traumatic events. We therefore analyzed NIHL in mice with a genetic deletion of the gene encoding cGMP-dependent protein kinase type I (Prkg1) and found a greater vulnerability to and markedly less recovery from NIHL in these mice as compared to mice without the deletion. Prkg1 was expressed in the sensory cells and neurons of the inner ear of wild-type mice, and its expression partly overlapped with the expression profile of cGMP-hydrolyzing phosphodiesterase 5 (Pde5). Treatment of rats and wild-type mice with the Pde5 inhibitor vardenafil almost completely prevented NIHL and caused a Prkg1-dependent upregulation of poly (ADP-ribose) in hair cells and the spiral ganglion, suggesting an endogenous protective cGMP-Prkg1 signaling pathway that culminates in the activation of poly (ADP-ribose) polymerase. These data suggest vardenafil or related drugs as possible candidates for the treatment of NIHL.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/fisiologia , Células Ciliadas Auditivas/fisiologia , Perda Auditiva Provocada por Ruído/genética , Transdução de Sinais/fisiologia , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/efeitos dos fármacos , Ativação Enzimática , Feminino , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/prevenção & controle , Imidazóis/farmacologia , Camundongos , Camundongos Mutantes , Ruído/efeitos adversos , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Poli Adenosina Difosfato Ribose/biossíntese , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/genética , Sulfonas/farmacologia , Triazinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Dicloridrato de Vardenafila
15.
PLoS One ; 6(7): e22181, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21765948

RESUMO

Retinitis pigmentosa (RP) is a heterogeneous group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness. Many human cases are caused by mutations in the rhodopsin gene. An important question regarding RP pathology is whether different genetic defects trigger the same or different cell death mechanisms. To answer this question, we analysed photoreceptor degeneration in P23H and S334ter transgenic rats carrying rhodopsin mutations that affect protein folding and sorting respectively. We found strong activation of calpain and poly(ADP-ribose) polymerase (PARP) in both mutants, concomitant with calpastatin down-regulation, increased oxidative DNA damage and accumulation of PAR polymers. These parameters were strictly correlated with the temporal progression of photoreceptor degeneration, mirroring earlier findings in the phosphodiesterase-6 mutant rd1 mouse, and suggesting execution of non-apoptotic cell death mechanisms. Interestingly, activation of caspases-3 and -9 and cytochrome c leakage-key events in apoptotic cell death--were observed only in the S334ter mutant, which also showed increased expression of PARP-1. The identification of the same metabolic markers triggered by different mutations in two different species suggests the existence of common cell death mechanisms, which is a major consideration for any mutation independent treatment.


Assuntos
Calpaína/metabolismo , Mutação/genética , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Rodopsina/genética , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Morte Celular , Forma Celular , Citocromos c/metabolismo , Dano ao DNA , Ativação Enzimática , Humanos , Marcação In Situ das Extremidades Cortadas , Estresse Oxidativo , Poli Adenosina Difosfato Ribose/metabolismo , Transporte Proteico , Ratos , Ratos Mutantes , Ratos Transgênicos , Coloração e Rotulagem
16.
Mol Ther ; 18(12): 2057-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20628362

RESUMO

Congenital absence of cone photoreceptor function is associated with strongly impaired daylight vision and loss of color discrimination in human achromatopsia. Here, we introduce viral gene replacement therapy as a potential treatment for this disease in the CNGA3(-/-) mouse model. We show that such therapy can restore cone-specific visual processing in the central nervous system even if cone photoreceptors had been nonfunctional from birth. The restoration of cone vision was assessed at different stages along the visual pathway. Treated CNGA3(-/-) mice were able to generate cone photoreceptor responses and to transfer these signals to bipolar cells. In support, we found morphologically that treated cones expressed regular cyclic nucleotide-gated (CNG) channel complexes and opsins in outer segments, which previously they did not. Moreover, expression of CNGA3 normalized cyclic guanosine monophosphate (cGMP) levels in cones, delayed cone cell death and reduced the inflammatory response of Müller glia cells that is typical of retinal degenerations. Furthermore, ganglion cells from treated, but not from untreated, CNGA3(-/-) mice displayed cone-driven, light-evoked, spiking activity, indicating that signals generated in the outer retina are transmitted to the brain. Finally, we demonstrate that this newly acquired sensory information was translated into cone-mediated, vision-guided behavior.


Assuntos
Anormalidades Congênitas/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Terapia Genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Clonagem Molecular , Anormalidades Congênitas/genética , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Knockout , Visão Ocular/genética
17.
Cell Tissue Res ; 336(3): 439-52, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19377856

RESUMO

The well-characterized human teratocarcinoma line Ntera2 (NT2) can be differentiated into mature neurons. We have significantly shortened the time-consuming process for generating postmitotic neurons to approximately 4 weeks by introducing a differentiation protocol for free-floating cell aggregates and a subsequent purification step. Here, we characterize the neurochemical phenotypes of the neurons derived from this cell aggregate method. During differentiation, the NT2 cells lose immunoreactivity for vimentin and nestin filaments, which are characteristic for the immature state of neuronal precursors. Instead, they acquire typical neuronal markers such as beta-tubulin type III, microtubule-associated protein 2, and phosphorylated tau, but no astrocyte markers such as glial fibrillary acidic protein. They grow neural processes that express punctate immunoreactivity for synapsin and synaptotagmin suggesting the formation of presynaptic structures. Despite their common clonal origin, neurons cultured for 2-4 weeks in vitro comprise a heterogeneous population expressing several neurotransmitter phenotypes. Approximately 40% of the neurons display glutamatergic markers. A minority of neurons is immunoreactive for serotonin, gamma-amino-butyric acid, and its synthesizing enzyme glutamic acid decarboxylase. We have found no evidence for a dopaminergic phenotype. Subgroups of NT2 neurons respond to the application of nitric oxide donors with the synthesis of cGMP. A major subset shows immunoreactivity to the cholinergic markers choline acetyl-transferase, vesicular acetylcholine transporter, and the non-phosphorylated form of neurofilament H, all indicative of motor neurons. The NT2 system may thus be well suited for research related to motor neuron diseases.


Assuntos
Diferenciação Celular , Neurônios/citologia , Animais , Agregação Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , GMP Cíclico/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Dopamina/metabolismo , Imunofluorescência , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurotransmissores/metabolismo , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Fenótipo , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Curr Mol Med ; 7(6): 541-54, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17896991

RESUMO

Disorders of the central nervous system are a major concern in modern human societies. Studies of these disorders require the use of suitable model systems that accurately reproduce the human situation. In this article we focus on the possibilities of using the human NT-2 teratocarcinoma cell line for studies on neuronal differentiation, cellular function and neurodegeneration. Neurons generated from undifferentiated NT-2 precursor cells show neuronal morphology, express neuronal markers, exhibit action potentials and have the advantage of homogeneous cellular composition of clonally derived cells. They release a number of different neurotransmitters, respond to stimulation with glutamate, gamma-amino-butyric acid, and nitric oxide, and form functional synapses in culture. Depending on the differentiation protocol, NT-2 cells also have the capacity to develop into glial cells. Different neuronal differentiation procedures and biological properties of NT-2 neurons are described in the text. In transplantation experiments, differentiated NT-2 neurons integrated successfully into the nervous systems of both experimental animals and human patients without evidence for tumor formation, underlining their value for both basic research and clinical applications. We discuss some potential applications in the fields of basic research, drug discovery, and therapy of CNS damage with particular emphasis on neuronal transplantation and different cell death mechanisms in neuronal degeneration. Grafting of NT-2 neurons has been shown to effectively reverse functional defects in animal disease models. Moreover, an ongoing phase 2 randomized clinical trial indicates the safety and feasibility of NT-2 neuron transplantation for the treatment of human patients with cerebral stroke.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/patologia , Encéfalo/fisiologia , Modelos Neurológicos , Regeneração Nervosa/fisiologia , Neurônios/patologia , Animais , Encéfalo/citologia , Modelos Animais de Doenças , Humanos , Neurônios/citologia
19.
Brain Res ; 1129(1): 116-29, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17156753

RESUMO

The rd1 mouse is a relevant model for studying the mechanisms of photoreceptor degeneration in retinitis pigmentosa. Treatment with ciliary neurotrophic factor (CNTF) in combination with brain derived neurotrophic factor (BDNF) is known to rescue photoreceptors in cultured rd1 retinal explants. To shed light on the underlying mechanisms, we studied the effects of 9 days (starting at postnatal day 2) in vitro CNTF+BDNF treatment on the endogenous production of CNTF, BDNF, fibroblast growth factor 2 (FGF2), or the activation of extracellular signal-regulated kinase (ERK), Akt and cAMP-response-element-binding protein (CREB) in retinal explants. In rd1 explants, CNTF+BDNF decreased the number of TUNEL-positive photoreceptors. The treatment also increased endogenous rd1 levels of CNTF and BDNF, but lowered the level of FGF2 expression in rd1 explants. When wild-type explants were treated, endogenous CNTF was similarly increased, while BDNF and FGF2 levels remained unaffected. In addition, treatment of rd1 retinas strongly increased the phosphorylation of ERK, Akt and CREB. In treated wild-type explants, the same parameters were either unchanged (ERK) or decreased (Akt and CREB). The results suggest a role for Akt, ERK and CREB in conveying the neuroprotective effect of CNTF+BDNF treatment in rd1 retinal explants.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Ciliar/farmacologia , Fármacos Neuroprotetores/farmacologia , Retina/efeitos dos fármacos , Retinose Pigmentar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fator Neurotrófico Ciliar/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Quimioterapia Combinada , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes Neurológicos , Fármacos Neuroprotetores/uso terapêutico , Técnicas de Cultura de Órgãos , Fosforilação/efeitos dos fármacos , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia , Transdução de Sinais/fisiologia
20.
ALTEX ; 24 Spec No: 16-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-19835047

RESUMO

We describe a novel cell culture protocol for the generation of neurons from a human teratocarcinoma cell line. These neurons were used to investigate hypoxic-ischaemic cell damage and for developing neuroprotective strategies. Cultures of human model neurons should eventually serve to reduce the number of experimental animals in cerebral stroke research.


Assuntos
Neurônios/patologia , Acidente Vascular Cerebral/patologia , Alternativas aos Testes com Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Teratocarcinoma/patologia , Neoplasias Testiculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA