Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1924, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772006

RESUMO

Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) can cause amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, the underlying mechanisms are unclear. Here, we generate CHCH10S59L-mutant Drosophila melanogaster and HeLa cell lines to model CHCHD10-associated ALS-FTD. The CHCHD10S59L mutation results in cell toxicity in several tissues and mitochondrial defects. CHCHD10S59L independently affects the TDP-43 and PINK1 pathways. CHCHD10S59L expression increases TDP-43 insolubility and mitochondrial translocation. Blocking TDP-43 mitochondrial translocation with a peptide inhibitor reduced CHCHD10S59L-mediated toxicity. While genetic and pharmacological modulation of PINK1 expression and activity of its substrates rescues and mitigates the CHCHD10S59L-induced phenotypes and mitochondrial defects, respectively, in both Drosophila and HeLa cells. Our findings suggest that CHCHD10S59L-induced TDP-43 mitochondrial translocation and chronic activation of PINK1-mediated pathways result in dominant toxicity, providing a mechanistic insight into the CHCHD10 mutations associated with ALS-FTD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Demência Frontotemporal/genética , Proteínas Mitocondriais/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Demência Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopia Confocal , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/genética , Homologia de Sequência de Aminoácidos
2.
Acta Neuropathol ; 141(1): 39-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079262

RESUMO

Several lines of recent evidence indicate that the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) could correspond to an etiological trigger of Alzheimer's disease (AD) pathology. Altered mitochondrial homeostasis is considered an early event in AD development. However, the specific contribution of APP-CTFs to mitochondrial structure, function, and mitophagy defects remains to be established. Here, we demonstrate in neuroblastoma SH-SY5Y cells expressing either APP Swedish mutations, or the ß-secretase-derived APP-CTF fragment (C99) combined with ß- and γ-secretase inhibition, that APP-CTFs accumulation independently of Aß triggers excessive mitochondrial morphology alteration (i.e., size alteration and cristae disorganization) associated with enhanced mitochondrial reactive oxygen species production. APP-CTFs accumulation also elicit basal mitophagy failure illustrated by enhanced conversion of LC3, accumulation of LC3-I and/or LC3-II, non-degradation of SQSTM1/p62, inconsistent Parkin and PINK1 recruitment to mitochondria, enhanced levels of membrane and matrix mitochondrial proteins, and deficient fusion of mitochondria with lysosomes. We confirm the contribution of APP-CTFs accumulation to morphological mitochondria alteration and impaired basal mitophagy in vivo in young 3xTgAD transgenic mice treated with γ-secretase inhibitor as well as in adeno-associated-virus-C99 injected mice. Comparison of aged 2xTgAD and 3xTgAD mice indicates that, besides APP-CTFs, an additional contribution of Aß to late-stage mitophagy activation occurs. Importantly, we report on mitochondrial accumulation of APP-CTFs in human post-mortem sporadic AD brains correlating with mitophagy failure molecular signature. Since defective mitochondria homeostasis plays a pivotal role in AD pathogenesis, targeting mitochondrial dysfunctions and/or mitophagy by counteracting early APP-CTFs accumulation may represent relevant therapeutic interventions in AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Mitofagia/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Autopsia , Linhagem Celular , Feminino , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Mol Genet Metab Rep ; 21: 100543, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31788426

RESUMO

Among mitochondrial diseases, isolated complex V (CV) deficiency represents a rare cause of respiratory chain (RC) dysfunction. In mammalian mitochondrial DNA (mtDNA), MT-ATP6 partly overlaps with MT-ATP8 making double mutations possible, yet extremely rarely reported principally in patients with cardiomyopathy. Here, we report a novel m.8561 C>T substitution in the overlapping region of MT-ATP6 and MT-ATP8 in a child with early-onset ataxia, psychomotor delay and microcephaly, enlarging the clinical manifestations spectrum associated with CV deficiency.

4.
Cell Metab ; 29(6): 1243-1257.e10, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827861

RESUMO

Diffuse large B cell lymphoma (DLBCL) is a heterogeneous disease treated with anti-CD20-based immuno-chemotherapy (R-CHOP). We identified that low levels of GAPDH predict a poor response to R-CHOP treatment. Importantly, we demonstrated that GAPDHlow lymphomas use OxPhos metabolism and rely on mTORC1 signaling and glutaminolysis. Consistently, disruptors of OxPhos metabolism (phenformin) or glutaminolysis (L-asparaginase) induce cytotoxic responses in GAPDHlow B cells and improve GAPDHlow B cell-lymphoma-bearing mice survival, while they are low or not efficient on GAPDHhigh B cell lymphomas. Ultimately, we selected four GAPDHlow DLBCL patients, who were refractory to all anti-CD20-based therapies, and targeted DLBCL metabolism using L-asparaginase (K), mTOR inhibitor (T), and metformin (M) (called KTM therapy). Three out of the four patients presented a complete response upon one cycle of KTM. These findings establish that the GAPDH expression level predicts DLBCL patients' response to R-CHOP treatment and their sensitivity to specific metabolic inhibitors.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gliceraldeído-3-Fosfato Desidrogenases/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Células Cultivadas , Estudos de Coortes , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Células HEK293 , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Prednisona/uso terapêutico , Prognóstico , Estudos Retrospectivos , Rituximab/uso terapêutico , Resultado do Tratamento , Vincristina/uso terapêutico , Adulto Jovem
5.
Cancers (Basel) ; 11(2)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795607

RESUMO

It is generally accepted that carcinogenesis and aging are two biological processes, which are known to be associated. Notably, the frequency of certain cancers (including lung cancer), increases significantly with the age of patients and there is now a wealth of data showing that multiple mechanisms leading to malignant transformation and to aging are interconnected, defining the so-called common biology of aging and cancer. OncoAge, a consortium launched in 2015, brings together the multidisciplinary expertise of leading public hospital services and academic laboratories to foster the transfer of scientific knowledge rapidly acquired in the fields of cancer biology and aging into innovative medical practice and silver economy development. This is achieved through the development of shared technical platforms (for research on genome stability, (epi)genetics, biobanking, immunology, metabolism, and artificial intelligence), clinical research projects, clinical trials, and education. OncoAge focuses mainly on two pilot pathologies, which benefit from the expertise of several members, namely lung and head and neck cancers. This review outlines the broad strategic directions and key advances of OncoAge and summarizes some of the issues faced by this consortium, as well as the short- and long-term perspectives.

6.
Am J Hum Genet ; 100(1): 151-159, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27989324

RESUMO

MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null. Metabolomics analyses demonstrated a significant concomitant accumulation of the MDH substrate, malate, and fumarate, its immediate precursor in the Krebs cycle, in affected subjects' fibroblasts. Lentiviral complementation with wild-type MDH2 cDNA restored MDH2 levels and mitochondrial MDH activity. Additionally, introduction of the three missense mutations from the affected subjects into Saccharomyces cerevisiae provided functional evidence to support their pathogenicity. Disruption of the Krebs cycle is a hallmark of cancer, and MDH2 has been recently identified as a novel pheochromocytoma and paraganglioma susceptibility gene. We show that loss-of-function mutations in MDH2 are also associated with severe neurological clinical presentations in children.


Assuntos
Encefalopatias/genética , Ciclo do Ácido Cítrico , Malato Desidrogenase/genética , Mutação , Idade de Início , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Ciclo do Ácido Cítrico/genética , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fumaratos/metabolismo , Teste de Complementação Genética , Humanos , Lactente , Recém-Nascido , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Masculino , Metabolômica , Modelos Moleculares
7.
Neuromuscul Disord ; 26(12): 885-889, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816331

RESUMO

An 11-year-old boy with psychomotor delay, exercise intolerance, ptosis and growth delay had a muscle biopsy showing typical mitochondrial alterations (60% of ragged-red fibers and 90% of cytochrome-c oxidase-deficient fibers). Next-generation sequencing revealed a novel heteroplasmic mutation (m.15958A>T) in the MTTP gene that encodes tRNAPro. The mutation was not present in the accessible non-muscle tissues of the patient's asymptomatic mother. Mutations in the rarely affected MTTP gene are responsible for different clinical presentations. We report the third early-onset case associated with a mutation in this gene. The severity of myopathy is likely related to the high mutation rate (96%) found in the patient's muscle. The clinical heterogeneity associated with MTTP mutations illustrates the value of the next-generation sequencing in routine diagnosis of mitochondrial diseases.


Assuntos
Genes Mitocondriais , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Mutação , RNA de Transferência de Prolina/genética , Criança , DNA Mitocondrial , Humanos , Masculino , Miopatias Mitocondriais/fisiopatologia , Músculo Esquelético/patologia , Fenótipo
8.
Biol Res ; 49: 4, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26742794

RESUMO

BACKGROUND: Coenzyme Q10 (CoQ10 or ubiquinone) deficiency can be due either to mutations in genes involved in CoQ10 biosynthesis pathway, or to mutations in genes unrelated to CoQ10 biosynthesis. CoQ10 defect is the only oxidative phosphorylation disorder that can be clinically improved after oral CoQ10 supplementation. Thus, early diagnosis, first evoked by mitochondrial respiratory chain (MRC) spectrophotometric analysis, then confirmed by direct measurement of CoQ10 levels, is of critical importance to prevent irreversible damage in organs such as the kidney and the central nervous system. It is widely reported that CoQ10 deficient patients present decreased quinone-dependent activities (segments I + III or G3P + III and II + III) while MRC activities of complexes I, II, III, IV and V are normal. We previously suggested that CoQ10 defect may be associated with a deficiency of CoQ10-independent MRC complexes. The aim of this study was to verify this hypothesis in order to improve the diagnosis of this disease. RESULTS: To determine whether CoQ10 defect could be associated with MRC deficiency, we quantified CoQ10 by LC-MSMS in a cohort of 18 patients presenting CoQ10-dependent deficiency associated with MRC defect. We found decreased levels of CoQ10 in eight patients out of 18 (45 %), thus confirming CoQ10 disease. CONCLUSIONS: Our study shows that CoQ10 defect can be associated with MRC deficiency. This could be of major importance in clinical practice for the diagnosis of a disease that can be improved by CoQ10 supplementation.


Assuntos
Ataxia/genética , Transporte de Elétrons/genética , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Mutação , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Adolescente , Adulto , Idoso , Ataxia/diagnóstico , Ataxia/metabolismo , Biópsia , Células Cultivadas , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Fibroblastos/enzimologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/metabolismo , Debilidade Muscular/diagnóstico , Debilidade Muscular/metabolismo , Músculos/patologia , Espectrofotometria/métodos , Espectrometria de Massas em Tandem/métodos , Ubiquinona/biossíntese , Ubiquinona/genética , Ubiquinona/metabolismo , Adulto Jovem
9.
Biol. Res ; 49: 1-9, 2016. tab
Artigo em Inglês | LILACS | ID: lil-774431

RESUMO

BACKGROUND: Coenzyme Q10 (CoQ10 or ubiquinone) deficiency can be due either to mutations in genes involved in CoQ10 biosynthesis pathway, or to mutations in genes unrelated to CoQ10 biosynthesis. CoQ10 defect is the only oxidative phosphorylation disorder that can be clinically improved after oral CoQ10 supplementation. Thus, early diagnosis, first evoked by mitochondrial respiratory chain (MRC) spectrophotometric analysis, then confirmed by direct measurement of CoQ10 levels, is of critical importance to prevent irreversible damage in organs such as the kidney and the central nervous system. It is widely reported that CoQ10 deficient patients present decreased quinone-dependent activities (segments I + III or G3P + III and II + III) while MRC activities of complexes I, II, III, IV and V are normal. We previously suggested that CoQ10 defect may be associated with a deficiency of CoQ10-independent MRC complexes. The aim of this study was to verify this hypothesis in order to improve the diagnosis of this disease. RESULTS: To determine whether CoQ10 defect could be associated with MRC deficiency, we quantified CoQ10 by LC-MSMS in a cohort of 18 patients presenting CoQ10-dependent deficiency associated with MRC defect. We found decreased levels of CoQ10 in eight patients out of 18 (45 %), thus confirming CoQ10 disease. CONCLUSIONS: Our study shows that CoQ10 defect can be associated with MRC deficiency. This could be of major importance in clinical practice for the diagnosis of a disease that can be improved by CoQ10 supplementation.


Assuntos
Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Ataxia/genética , Transporte de Elétrons/genética , Mutação , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia/diagnóstico , Ataxia/metabolismo , Biópsia , Células Cultivadas , Cromatografia Líquida , Fibroblastos/enzimologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/metabolismo , Debilidade Muscular/diagnóstico , Debilidade Muscular/metabolismo , Músculos/patologia , Espectrofotometria/métodos , Espectrometria de Massas em Tandem/métodos , Ubiquinona/biossíntese , Ubiquinona/genética , Ubiquinona/metabolismo
10.
Brain ; 137(Pt 8): 2329-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24934289

RESUMO

Mitochondrial DNA instability disorders are responsible for a large clinical spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal dementia are extremely rare. We report a large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and cytochrome c oxidase-negative fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The multiple mitochondrial DNA deletions found in skeletal muscle revealed a mitochondrial DNA instability disorder. Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural alterations and fragmentation of the mitochondrial network. Interestingly, expression of matrix-targeted photoactivatable GFP showed that mitochondrial fusion was not inhibited in patient fibroblasts. Using whole-exome sequencing we identified a missense mutation (c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial protein located in the intermembrane space and enriched at cristae junctions. Overexpression of a CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network and ultrastructural major abnormalities including loss, disorganization and dilatation of cristae. The observation of a frontotemporal dementia-amyotrophic lateral sclerosis phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families with pathologically proven frontotemporal dementia-amyotrophic lateral sclerosis. We identified the same missense p.Ser59Leu mutation in one of these families. This work opens a novel field to explore the pathogenesis of the frontotemporal dementia-amyotrophic lateral sclerosis clinical spectrum by showing that mitochondrial disease may be at the origin of some of these phenotypes.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , DNA Mitocondrial/genética , Demência Frontotemporal/etiologia , Mitocôndrias/patologia , Doenças Mitocondriais/complicações , Proteínas Mitocondriais/genética , Idade de Início , Idoso , Alelos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Exoma/genética , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Linhagem , Fenótipo
11.
Ophthalmic Epidemiol ; 20(1): 13-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23350551

RESUMO

PURPOSE: Inherited retinal dystrophies (IRDs) and inherited optic neuropathies (IONs) are rare diseases defined by specific clinical and molecular features. The relative prevalence of these conditions was determined in Southern France. METHODS: Patients recruited from a specialized outpatient clinic over a 21-year period underwent extensive clinical investigations and 107 genes were screened by polymerase chain reaction/sequencing. RESULTS: There were 1957 IRD cases (1481 families) distributed in 70% of pigmentary retinopathy cases (56% non-syndromic, 14% syndromic), 20% maculopathies and 7% stationary conditions. Patients with retinitis pigmentosa were the most frequent (47%) followed by Usher syndrome (10.8%). Among non-syndromic pigmentary retinopathy patients, 84% had rod-cone dystrophy, 8% cone-rod dystrophy and 5% Leber congenital amaurosis. Macular dystrophies were encountered in 398 cases (30% had Stargardt disease and 11% had Best disease). There were 184 ION cases (127 families) distributed in 51% with dominant optic neuropathies, 33% with recessive/sporadic forms and 16% with Leber hereditary optic neuropathy. Positive molecular results were obtained in 417/609 families with IRDs (68.5%) and in 27/58 with IONs (46.5%). The sequencing of 5 genes (ABCA4, USH2A, MYO7A, RPGR and PRPH2) provided a positive molecular result in 48% of 417 families with IRDs. Except for autosomal retinitis pigmentosa, in which less than half the families had positive molecular results, about 75% of families with other forms of retinal conditions had a positive molecular diagnosis. CONCLUSIONS: Although gene discovery considerably improved molecular diagnosis in many subgroups of IRDs and IONs, retinitis pigmentosa, accounting for almost half of IRDs, remains only partly molecularly defined.


Assuntos
Oftalmopatias Hereditárias/epidemiologia , Doenças do Nervo Óptico/epidemiologia , Distrofias Retinianas/epidemiologia , Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise Mutacional de DNA , Proteínas da Matriz Extracelular/genética , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Proteínas do Olho/genética , Feminino , França/epidemiologia , Humanos , Lactente , Proteínas de Filamentos Intermediários/genética , Masculino , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Mutação , Miosina VIIa , Miosinas/genética , Proteínas do Tecido Nervoso/genética , Doenças do Nervo Óptico/diagnóstico , Doenças do Nervo Óptico/genética , Periferinas , Reação em Cadeia da Polimerase , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Adulto Jovem
12.
Eur J Ophthalmol ; 22(2): 254-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21623591

RESUMO

PURPOSE: Wolfram syndrome (WS) or diabetes insipidus, diabetes mellitus, optic atrophy, and deafness (DIDMOAD) (OMIM 222300) is an inherited neurodegenerative disease characterized by diabetes mellitus and optic atrophy as the 2 major criteria, followed later in life by deafness, diabetes insipidus, and various signs of neurologic impairment. The presence of a cataract has been variably mentioned in WS. METHOD: Two members of a family had thorough ophthalmic examination and their DNA was screened for mutations in mitochondrial DNA, WFS1, OPA1, and OPA3 genes. RESULTS: We report a patient who first had surgery for bilateral cataract at age 5 and who subsequently presented typical signs of WS, i.e., diabetes mellitus, optic atrophy with reduced visual acuity at 20/400 on both eyes at age 22, and mild deafness. The patient was found to be a compound heterozygote for 2 truncating mutations in WFS1, the major WS gene. She carried the previously reported c.1231_1233 delCT and a novel c.2431_2465dup35 mutation. She also was heterozygote for a novel OPA1 sequence variant, c.929A>G in exon 9, whose pathogenicity remains uncertain. The patient's mother was a heterozygous carrier of the c.2431_2465dup35 mutation. She did not have diabetes mellitus or optic atrophy but had bilateral polar cataract. She did not carry the OPA1 sequence variant. CONCLUSIONS: Cataract could be a marker for the WFS1 heterozygosity in this family, namely the c.2431_2465dup35 mutation.


Assuntos
Catarata/genética , Proteínas de Membrana/genética , Mutação , Síndrome de Wolfram/genética , Adulto , Catarata/diagnóstico , Extração de Catarata , DNA Mitocondrial/genética , Potenciais Evocados Visuais/fisiologia , Éxons/genética , Feminino , GTP Fosfo-Hidrolases/genética , Marcadores Genéticos , Heterozigoto , Humanos , Linhagem , Fenótipo , Proteínas/genética , Acuidade Visual/fisiologia , Campos Visuais/fisiologia , Síndrome de Wolfram/diagnóstico , Síndrome de Wolfram/fisiopatologia , Adulto Jovem
13.
J Neurooncol ; 102(2): 171-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20652725

RESUMO

Overexpression of epidermal growth factor receptor (EGFR) is common in gliomas. Gliomas are infiltrating tumors in which neoplastic glial cells can be intermingled with reactive glial cells, particularly in diffuse low-grade gliomas. As overexpression of EGFR has also been described in gliosis, it can be difficult to evaluate EGFR immunolabeling in diffuse low-grade gliomas because of this cell mix. We compared EGFR immunolabeling between gliosis and low-grade gliomas in order to identify distinctive criteria. We studied EGFR expression in 28 cases of gliosis and 39 diffuse low-grade gliomas (23 astrocytomas and 16 oligodendrogliomas). EGFR immunohistochemistry staining was performed on paraffin-embedded sections with a mouse monoclonal antibody (clone 2-18C9; Dako). Co-expression of EGFR with Olig2, Mib-1, and p53 was assessed in seven cases of low-grade gliomas using double immunolabeling. Then, EGFR immunostaining was blindly tested on 22 small specimens of indeterminate glial lesions provided by a reference neuropathological center. Two pathologists of our local center were asked to classify the lesions into diffuse low-grade glioma or gliosis according to the pattern of EGFR expression. Weak expression of EGFR was commonly detected in gliosis (23/28 cases). Strongly-stained cells were absent. Positive cells had reactive glial cell morphology. EGFR expression in gliomas was characterized by constant strongly-stained cells (39/39 cases). All strongly-stained cells had a high nucleus-to-cytoplasm ratio, with minimal to moderate nuclear atypia. Most of the strongly EGFR-positive cells were Olig2-positive. All the cases displayed cells co-expressing EGFR and Mib-1. In three p53-positive tumors, many p53-positive cells were strongly EGFR-positive. On the basis of EGFR expression, 14 out of the 22 indeterminate cases were classified as gliomas and eight as gliosis by both pathologists. Concordance with the initial diagnosis established by the reference center and concordance between the pathologists were 100%. Our results confirm that weak EGFR expression can be detected by immunohistochemistry in gliosis. They show that strong EGFR expression may be specific for neoplastic glial cells. As all low-grade gliomas contained strongly-stained cells in our study, we believe that EGFR immunohistochemistry could be a useful tool for detection of neoplastic glial cells in case of indeterminate glial lesions.


Assuntos
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Glioma/metabolismo , Gliose/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/secundário , Glioma/patologia , Gliose/patologia , Humanos , Técnicas Imunoenzimáticas , Melanoma/metabolismo , Melanoma/secundário , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Prognóstico , Estudos Retrospectivos , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
14.
Nat Genet ; 39(6): 776-80, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17486094

RESUMO

Mitochondrial DNA (mtDNA) depletion syndrome (MDS; MIM 251880) is a prevalent cause of oxidative phosphorylation disorders characterized by a reduction in mtDNA copy number. The hitherto recognized disease mechanisms alter either mtDNA replication (POLG (ref. 1)) or the salvage pathway of mitochondrial deoxyribonucleosides 5'-triphosphates (dNTPs) for mtDNA synthesis (DGUOK (ref. 2), TK2 (ref. 3) and SUCLA2 (ref. 4)). A last gene, MPV17 (ref. 5), has no known function. Yet the majority of cases remain unexplained. Studying seven cases of profound mtDNA depletion (1-2% residual mtDNA in muscle) in four unrelated families, we have found nonsense, missense and splice-site mutations and in-frame deletions of the RRM2B gene, encoding the cytosolic p53-inducible ribonucleotide reductase small subunit. Accordingly, severe mtDNA depletion was found in various tissues of the Rrm2b-/- mouse. The mtDNA depletion triggered by p53R2 alterations in both human and mouse implies that p53R2 has a crucial role in dNTP supply for mtDNA synthesis.


Assuntos
Proteínas de Ciclo Celular/genética , DNA Mitocondrial/genética , Deleção de Genes , Doenças Mitocondriais/etiologia , Mutação/genética , Ribonucleotídeo Redutases/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Análise Mutacional de DNA , Feminino , Fibroblastos , Homozigoto , Humanos , Recém-Nascido , Escore Lod , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Musculares , Doenças Mitocondriais/patologia , Dados de Sequência Molecular , Linhagem , Ribonucleotídeo Redutases/fisiologia , Proteína Supressora de Tumor p53/genética
16.
Med Sci (Paris) ; 19(1): 85-91, 2003 Jan.
Artigo em Francês | MEDLINE | ID: mdl-12836196

RESUMO

In eukaryotes, homologs of the Escherichia coli MutS and MutL proteins are crucial for both meiotic recombination and post-replicative DNA mismatch repair. Both pathways require the formation of a MutS homolog complex which interacts with a second heterodimer, composed of two MutL homologs. During mammalian meiosis, it is likely that chromosome synapsis requires the presence of a MSH4-MSH5 heterodimer. PMS2, a MutL homolog, seems to play an important role in this process. A MSH4-MSH5 heterodimer is also likely present later with other MutL homologs (MLH1 and MLH3) and is involved in the crossing-over process. The phenotype of msh4-/- mutant mice and MSH4 immunolocalization on meiotic chromosomes suggest that MSH4 has an early function in mammalian meiotic recombination. Both MSH4 and PMS2 directly interact with the RAD51 DNA strand exchange protein. In addition, MSH4 and RAD51 proteins co-localize on mouse meiotic chromosome cores. These results suggest that MSH4 and its partners could act, just after strand exchange promoted by RAD51, to check the homology of DNA heteroduplexes.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/fisiologia , Mamíferos/genética , Meiose/genética , Proteínas de Neoplasias/fisiologia , Proteínas/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte , Proteínas de Ciclo Celular , Segregação de Cromossomos/fisiologia , Troca Genética/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Proteínas de Escherichia coli/fisiologia , Evolução Molecular , Feminino , Humanos , Infertilidade/genética , Masculino , Mamíferos/fisiologia , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento , Proteína 2 Homóloga a MutS , Proteína 3 Homóloga a MutS , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Nucleares , Proteínas/química , Proteínas/genética , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Rad51 Recombinase , Recombinação Genética , Especificidade da Espécie
17.
Hum Mol Genet ; 11(15): 1697-706, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12095912

RESUMO

The mismatch-repair (MMR) system plays a central role in maintaining genetic stability and requires evolutionarily conserved protein factors, including MutS and MutL homologs. Since the discovery of a link between the malfunction of post-replicative MMR and human cancers, a number of works have focused on the function of MutS and MutL homologs in the correction of replication errors. However, several MutS-like and MutL-like proteins also participate in meiotic recombination. The MutL homolog MLH3 has been recently identified in mammals. Several pieces of evidence support a role for this protein in post-replicative MMR. To investigate whether MLH3 also acts during meiotic recombination, we analyzed its expression in mammalian germ cells. The MLH3 gene is expressed in mouse meiotic cells and in human testis, and, as revealed by immunoprecipitation assays, the MLH3 protein is found in mouse spermatocytes. We further demonstrate that the meiosis-specific MSH4 protein, known to participate to meiotic recombination, is co-immunoprecipitated with MLH3 from mouse meiotic cell extracts. In addition, the two MLH3 protein isoforms potentially expressed in human testis (hMLH3 and hMLH3 Delta 7) interact in vitro with the hMSH4 protein. These interaction data suggest that MLH3 is associated with MSH4 in mammalian meiotic cells, and strongly support the possibility that MLH3 plays a role in mammalian meiotic recombination.


Assuntos
Proteínas de Transporte/metabolismo , Reparo do DNA/fisiologia , Proteínas/metabolismo , Recombinação Genética/fisiologia , Animais , Pareamento Incorreto de Bases , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Humanos , Masculino , Meiose/fisiologia , Camundongos , Proteínas MutL , Testes de Precipitina , Proteínas/genética , Espermatócitos/metabolismo , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA