Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612858

RESUMO

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Assuntos
Asma , Linfopoietina do Estroma do Timo , Humanos , Triptases , Quimases , Indutores da Angiogênese , Serina Proteases , Citocinas
2.
Eur J Intern Med ; 124: 89-98, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402021

RESUMO

BACKGROUND: Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS: We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS: TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS: Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.


Assuntos
Asma , Citocinas , Interleucina-4 , Lipopolissacarídeos , Macrófagos Alveolares , Doença Pulmonar Obstrutiva Crônica , Linfopoietina do Estroma do Timo , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Asma/metabolismo , Asma/imunologia , Citocinas/metabolismo , Interleucina-4/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/imunologia , Lipopolissacarídeos/farmacologia , Interleucina-13/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas
3.
Cells ; 11(3)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35159178

RESUMO

Golgi apparatus is the central component of the mammalian secretory pathway and it regulates the biosynthesis of the plasma membrane through three distinct but interacting processes: (a) processing of protein and lipid cargoes; (b) creation of a sharp transition in membrane lipid composition by non-vesicular transport of lipids; and (c) vesicular sorting of proteins and lipids at the trans-Golgi network to target them to appropriate compartments. We discuss the molecules involved in these processes and their importance in physiology and development. We also discuss how mutations in these molecules affect plasma membrane composition and signaling leading to genetic diseases and cancer.


Assuntos
Complexo de Golgi , Rede trans-Golgi , Animais , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Mamíferos , Lipídeos de Membrana/metabolismo , Transporte Proteico , Rede trans-Golgi/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969853

RESUMO

Adenosine diphosphate (ADP)-ribosylation is a posttranslational modification involved in key regulatory events catalyzed by ADP-ribosyltransferases (ARTs). Substrate identification and localization of the mono-ADP-ribosyltransferase PARP12 at the trans-Golgi network (TGN) hinted at the involvement of ARTs in intracellular traffic. We find that Golgin-97, a TGN protein required for the formation and transport of a specific class of basolateral cargoes (e.g., E-cadherin and vesicular stomatitis virus G protein [VSVG]), is a PARP12 substrate. PARP12 targets an acidic cluster in the Golgin-97 coiled-coil domain essential for function. Its mutation or PARP12 depletion, delays E-cadherin and VSVG export and leads to a defect in carrier fission, hence in transport, with consequent accumulation of cargoes in a trans-Golgi/Rab11-positive intermediate compartment. In contrast, PARP12 does not control the Golgin-245-dependent traffic of cargoes such as tumor necrosis factor alpha (TNFα). Thus, the transport of different basolateral proteins to the plasma membrane is differentially regulated by Golgin-97 mono-ADP-ribosylation by PARP12. This identifies a selective regulatory mechanism acting on the transport of Golgin-97- vs. Golgin-245-dependent cargoes. Of note, PARP12 enzymatic activity, and consequently Golgin-97 mono-ADP-ribosylation, depends on the activation of protein kinase D (PKD) at the TGN during traffic. PARP12 is directly phosphorylated by PKD, and this is essential to stimulate PARP12 catalytic activity. PARP12 is therefore a component of the PKD-driven regulatory cascade that selectively controls a major branch of the basolateral transport pathway. We propose that through this mechanism, PARP12 contributes to the maintenance of E-cadherin-mediated cell polarity and cell-cell junctions.


Assuntos
ADP-Ribosilação/fisiologia , Autoantígenos/metabolismo , Caderinas/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Quinase C/metabolismo , Antígenos CD , Catálise , Células HeLa , Humanos , Transporte Proteico , Fator de Necrose Tumoral alfa , Rede trans-Golgi/metabolismo
5.
EMBO J ; 40(8): e107238, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33749896

RESUMO

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Assuntos
Proliferação de Células , Glicoesfingolipídeos/biossíntese , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transdução de Sinais
6.
J Cell Physiol ; 233(3): 2304-2312, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28710861

RESUMO

Ketoprofen L-lysine salt (KLS), is widely used due to its analgesic efficacy and tolerability, and L-lysine was reported to increase the solubility and the gastric tolerance of ketoprofen. In a recent report, L-lysine salification has been shown to exert a gastroprotective effect due to its specific ability to counteract the NSAIDs-induced oxidative stress and up-regulate gastroprotective proteins. In order to derive further insights into the safety and efficacy profile of KLS, in this study we additionally compared the effect of lysine and arginine, another amino acid counterion commonly used for NSAIDs salification, in control and in ethanol challenged human gastric mucosa model. KLS is widely used for the control of post-surgical pain and for the management of pain and fever in inflammatory conditions in children and adults. It is generally well tolerated in pediatric patients, and data from three studies in >900 children indicate that oral administration is well tolerated when administered for up to 3 weeks after surgery. Since only few studies have so far investigated the effect of ketoprofen on gastric mucosa maintenance and adaptive mechanisms, in the second part of the study we applied the cMap approach to compare ketoprofen-induced and ibuprofen-induced gene expression profiles in order to explore compound-specific targeted biological pathways. Among the several genes exclusively modulated by ketoprofen, our attention was particularly focused on genes involved in the maintenance of gastric mucosa barrier integrity (cell junctions, morphology, and viability). The hypothesis was further validated by Real-time PCR.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Arginina/farmacologia , Células Epiteliais/efeitos dos fármacos , Etanol/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Ibuprofeno/farmacologia , Cetoprofeno/análogos & derivados , Lisina/análogos & derivados , Anti-Inflamatórios não Esteroides/toxicidade , Arginina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Combinação de Medicamentos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Ibuprofeno/toxicidade , Cetoprofeno/farmacologia , Cetoprofeno/toxicidade , Lisina/farmacologia , Lisina/toxicidade , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
7.
J Cell Biol ; 216(4): 901-909, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28280121

RESUMO

TANGO1 (transport and Golgi organization 1) interacts with CTAGE5 and COPII components Sec23/Sec24 and recruits ERGIC-53 (endoplasmic reticulum [ER]-Golgi intermediate compartment 53)-containing membranes to generate a mega-transport carrier for export of collagens and apolipoproteins from the ER. We now show that TANGO1, at the ER, assembles in a ring that encircles COPII components. The C-terminal, proline-rich domains of TANGO1 molecules in the ring are initially tilted onto COPII coats but appear to be pushed apart as the carrier grows. These findings lend support to our suggestion that growth of transport carriers for exporting bulky cargoes requires addition of membranes and not simply COPII-mediated accretion of a larger surface of ER. TANGO1 remains at the neck of the newly forming transport carrier, which grows in size by addition of ERGIC-53-containing membranes to generate a transport intermediate for the export of bulky collagens.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/metabolismo
8.
Tissue Cell ; 49(2 Pt A): 175-185, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28222887

RESUMO

The presence of a functional protein at the appropriate location in the cell is the result of the processes of transcription, translation, folding and trafficking to the correct destination. There are numerous diseases that are caused by protein misfolding, mainly due to mutations in the respective gene. The consequences of this misfolding may be that proteins effectively lose their function, either by being removed by the cellular quality control machinery or by accumulating at the incorrect intracellular or extracellular location. A number of mutations that lead to protein misfolding and affect trafficking to the final destination, e.g. Cystic fibrosis, Wilson's disease, and Progressive Familial Intrahepatic 1 cholestasis, result in proteins that retain partial function if their folding and trafficking is restored either by molecular or pharmacological means. In this review, we discuss several mutant proteins within this class of misfolding diseases and provide an update on the status of molecular and therapeutic developments and potential therapeutic strategies being developed to counter these diseases.


Assuntos
Transporte Proteico/genética , Proteínas/genética , Deficiências na Proteostase/genética , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/patologia , Fibrose Cística/genética , Fibrose Cística/patologia , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/patologia , Humanos , Proteínas/metabolismo , Deficiências na Proteostase/patologia
9.
Tissue Cell ; 49(2 Pt A): 170-174, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27378035

RESUMO

The Golgi phosphoprotein 3 (GOLPH3) is encoded by a gene that is located in a region of the human genome that is often amplified in different solid tumours. GOLPH3, an evolutionary conserved phosphatidylinositol 4-phosphate (PI4P) binding protein, is mainly localised at trans Golgi network (TGN). It regulates several cellular functions like Golgi vesicular trafficking, Golgi glycosylation and mitochondrial cardiolipin production. Recently, GOLPH3 was discovered to be part of the DNA damage response signalling pathway, with a role in cell survival following DNA damage. In this review, we will explore the cellular functions regulated by GOLPH3 and discuss if and how they contribute to the oncogenic activity of this intriguing Golgi localized oncoprotein.


Assuntos
Carcinogênese/genética , Transformação Celular Neoplásica/genética , Complexo de Golgi/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos/genética , Transformação Celular Neoplásica/patologia , Dano ao DNA/genética , Complexo de Golgi/patologia , Humanos , Fosfatos de Fosfatidilinositol/genética , Transporte Proteico/genética , Rede trans-Golgi/genética
10.
Elife ; 52016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27115345

RESUMO

The unconventional secretory pathway exports proteins that bypass the endoplasmic reticulum. In Saccharomyces cerevisiae, conditions that trigger Acb1 secretion via this pathway generate a Grh1 containing compartment composed of vesicles and tubules surrounded by a cup-shaped membrane and collectively called CUPS. Here we report a quantitative assay for Acb1 secretion that reveals requirements for ESCRT-I, -II, and -III but, surprisingly, without the involvement of the Vps4 AAA-ATPase. The major ESCRT-III subunit Snf7 localizes transiently to CUPS and this was accelerated in vps4Δ cells, correlating with increased Acb1 secretion. Microscopic analysis suggests that, instead of forming intraluminal vesicles with the help of Vps4, ESCRT-III/Snf7 promotes direct engulfment of preexisting Grh1 containing vesicles and tubules into a saccule to generate a mature Acb1 containing compartment. This novel multivesicular / multilamellar compartment, we suggest represents the stable secretory form of CUPS that is competent for the release of Acb1 to cells exterior.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Deleção de Genes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Hepatology ; 63(6): 1842-59, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26660341

RESUMO

UNLABELLED: Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels. CONCLUSION: Our findings indicate p38 and c-Jun N-terminal kinase as intriguing targets for correction of WD-causing mutants and, hence, as potential candidates, which could be evaluated for the development of novel therapeutic strategies to combat WD. (Hepatology 2016;63:1842-1859).


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Degeneração Hepatolenticular/genética , Sistema de Sinalização das MAP Quinases , Cobre/metabolismo , ATPases Transportadoras de Cobre , Células HeLa , Células Hep G2 , Degeneração Hepatolenticular/metabolismo , Humanos , Fígado/metabolismo , Mutação , Via Secretória
12.
Elife ; 42015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26701908

RESUMO

Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether 'classical' signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Deficiências na Proteostase/genética , Transdução de Sinais , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Perfilação da Expressão Gênica , Humanos , Dobramento de Proteína , Proteólise , Deleção de Sequência
13.
Elife ; 32014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24867214

RESUMO

The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression-maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence for a transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes.


Assuntos
Albuminas/metabolismo , Complexo de Golgi/metabolismo , alfa 1-Antitripsina/metabolismo , Transporte Biológico , Simulação por Computador , Difusão , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Hep G2 , Humanos , Luz , Microscopia Confocal , Microscopia Imunoeletrônica , Microscopia de Vídeo , Transporte Proteico
14.
J Biol Chem ; 287(8): 5574-87, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22190682

RESUMO

Several intracellular pathogens have developed diverse strategies to avoid targeting to lysosomes. However, they universally recruit lysosome-associated membrane protein 1 (LAMP1); the mechanism of LAMP1 recruitment remains unclear. Here, we report that a Salmonella effector protein, SipC, specifically binds with host Syntaxin6 through its C terminus and thereby recruits Syntaxin6 and other accessory molecules like VAMP2, Rab6, and Rab8 on Salmonella-containing phagosomes (SCP) and acquires LAMP1 by fusing with LAMP1-containing Golgi-derived vesicles. In contrast, sipC knock-out:SCP (sipC(-):SCP) or sipC(M398K):SCP fails to obtain significant amounts of Syntaxin6 and is unable to acquire LAMP1. Moreover, phagosomes containing respective knock-out Salmonella like sipA(-), sipB(-), sipD(-), sopB(-), or sopE(-) recruit LAMP1, demonstrating the specificity of SipC in this process. In addition, depletion of Syntaxin6 by shRNA in macrophages significantly inhibits LAMP1 recruitment on SCP. Additionally, survival of sipC(-):Salmonella in mice is found to be significantly inhibited in comparison with WT:Salmonella. Our results reveal a novel mechanism showing how Salmonella acquires LAMP1 through a SipC-Syntaxin6-mediated interaction probably to stabilize their niche in macrophages and also suggest that similar modalities might be used by other intracellular pathogens to recruit LAMP1.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo de Golgi/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Fagossomos/metabolismo , Fagossomos/microbiologia , Proteínas Qa-SNARE/metabolismo , Salmonella typhimurium/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Complexo de Golgi/microbiologia , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação , Transporte Proteico , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Especificidade por Substrato
15.
FEBS Lett ; 584(6): 1251-6, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20176016

RESUMO

Initial characterizations of live-Salmonella-containing early (LSEP) and late phagosomes (LSLP) in macrophages show that both phagosomes retain Rab5 and EEA1. In addition, LSEP specifically contain transferrin receptor whereas LSLP possess relatively more rabaptin-5. In contrast to LSLP, late-Salmonella-containing vacuoles in epithelial cells show significantly reduced levels of Rab5 and EEA1. Subsequent results demonstrate that both phagosomes efficiently fuse with early endosomes (EE). In contrast to LSEP, fusion between LSLP and EE is insensitive to ATPgammaS treatment. Furthermore, LSLP fuses with EE in absence of NEM-sensitive fusion factor (NSF) as well as in the presence of NSF:D1EQ mutant demonstrating that LSLP fusion with EE is NSF independent.


Assuntos
Endossomos/metabolismo , Fagossomos/metabolismo , Salmonella/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Células Cultivadas , Endossomos/patologia , Endossomos/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HeLa , Humanos , Hidrólise , Fusão de Membrana/fisiologia , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Fagocitose/fisiologia , Fagossomos/patologia , Fagossomos/fisiologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/patologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Fatores de Tempo
16.
J Cell Sci ; 115(Pt 18): 3693-701, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12186955

RESUMO

Previously, we showed that live Salmonella-containing phagosomes (LSP) recruit early acting Rab5 and promote fusion with early endosomes, thus avoiding transport to the lysosomes. Therefore, live Salmonella survive in a specialized compartment. Here we show that scavenger-receptor-mediated intracellular delivery of muramyl dipeptide (MDP) to macrophages leads to efficient killing of Salmonella both in vitro and in vivo. To understand the intracellular trafficking modulation of Salmonella by delivery of MDP, we investigated the levels of endocytic Rab proteins, which are the major regulators of vesicular transport. Western blot analysis reveals reduced Rab5 and enhanced Rab7 content in the maleylated bovine serum albumin-MDP (MBSA-MDP)-treated cells. The reduced content of Rab5 in the treated cells and on phagosomes inhibits the fusion of Salmonella-containing phagosomes with early endosomes, and the enhanced Rab7 content in these cells facilitated targeting of LSP to lysosomes, which contain cathepsin D and vacuolar ATPase, for killing. In vitro reconstitution of lysosomal transport demonstrated that a reduced content of Rab5 and an enhanced level of Rab7 in MBSA-MDP-treated cells is primarily responsible for targeting Salmonella to lysosomes. Intracellular delivery of MDP thus offers a general strategy against macrophage-associated infections caused by intracellular pathogens that survive in the host cell by resisting transport to lysosomes.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Lisossomos/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/fisiologia , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Proteínas rab de Ligação ao GTP/efeitos dos fármacos , Proteínas rab5 de Ligação ao GTP/efeitos dos fármacos , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA