Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Gels ; 8(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35200479

RESUMO

Approaches for effective and sustained drug delivery to the female reproductive tract (FRT) for treating a range of gynaecological conditions remain limited. The development of versatile delivery platforms, such as soluble gels (sol-gels) coupled with applicators/devices, holds considerable therapeutic potential for gynaecological conditions. Sol-gel systems, which undergo solution-to-gel transition, triggered by physiological conditions such as changes in temperature, pH, or ion composition, offer advantages of both solution- and gel-based drug formulations. Furthermore, they have potential to be used as a suitable drug delivery vehicle for other novel drug formulations, including micro- and nano-particulate systems, enabling the delivery of drug molecules of diverse physicochemical character. We provide an anatomical and physiological perspective of the significant challenges and opportunities in attaining optimal drug delivery to the upper and lower FRT. Discussion then focuses on attributes of sol-gels that can vastly improve the treatment of gynaecological conditions. The review concludes by showcasing recent advances in vaginal formulation design, and proposes novel formulation strategies enabling the infusion of a wide range of therapeutics into sol-gels, paving the way for patient-friendly treatment regimens for acute and chronic FRT-related conditions such as bacterial/viral infection control (e.g., STDs), contraception, hormone replacement therapy (HRT), infertility, and cancer.

2.
Cancers (Basel) ; 13(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771442

RESUMO

The innate immune receptor toll-like receptor 4 (TLR4) is known as a sensor for the gram-negative bacterial cell wall component lipopolysaccharide (LPS). TLR4 activation leads to a strong pro-inflammatory response in macrophages; however, it is also recognised to play a key role in cancer. Recent studies of the opioid receptor (OR)-independent actions of opioids have identified that TLR4 can respond to opioids. Opioids are reported to weakly activate TLR4, but to significantly inhibit LPS-induced TLR4 activation. The action of opioids at TLR4 is suggested to be non-stereoselective, this is because OR-inactive (+)-isomers of opioids have been shown to activate or to inhibit TLR4 signalling, although there is some controversy in the literature. While some opioids can bind to the lipopolysaccharide (LPS)-binding cleft of the Myeloid Differentiation factor 2 (MD-2) co-receptor, pharmacological characterisation of the inhibition of opioids on LPS activation of TLR4 indicates a noncompetitive mechanism. In addition to a direct interaction at the receptor, opioids affect NF-κB activation downstream of both TLR4 and opioid receptors and modulate TLR4 expression, leading to a range of in vivo outcomes. Here, we review the literature reporting the activity of opioids at TLR4, its proposed mechanism(s), and the complex functional consequences of this interaction.

3.
Curr Oncol Rep ; 23(11): 123, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34448972

RESUMO

PURPOSE OF REVIEW: Opioids are administered to cancer patients although concerns have been raised that they may promote tumour growth or metastasis owing to their ability to suppress anti-cancer immunity. Tramadol has been reported to preserve or promote the immune response and may therefore be preferred to other opioids in cancer patients. We reviewed the literature documenting the immunomodulatory effects of tramadol. RECENT FINDINGS: Recent clinical evidence appears to confirm that tramadol possesses anti-inflammatory properties, and preserves some signalling cascades of the immune system relevant to anti-cancer defence. Tramadol is reported to promote or preserve immunity including natural killer cell activity which is important in anti-cancer defences.


Assuntos
Agentes de Imunomodulação/farmacologia , Tramadol/imunologia , Tramadol/farmacologia , Animais , Anti-Inflamatórios não Esteroides/imunologia , Anti-Inflamatórios não Esteroides/farmacologia , Humanos , Sistema Imunitário/efeitos dos fármacos , Agentes de Imunomodulação/imunologia
4.
Elife ; 102021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34142659

RESUMO

Caveolae-associated protein 3 (cavin3) is inactivated in most cancers. We characterized how cavin3 affects the cellular proteome using genome-edited cells together with label-free quantitative proteomics. These studies revealed a prominent role for cavin3 in DNA repair, with BRCA1 and BRCA1 A-complex components being downregulated on cavin3 deletion. Cellular and cell-free expression assays revealed a direct interaction between BRCA1 and cavin3 that occurs when cavin3 is released from caveolae that are disassembled in response to UV and mechanical stress. Overexpression and RNAi-depletion revealed that cavin3 sensitized various cancer cells to UV-induced apoptosis. Supporting a role in DNA repair, cavin3-deficient cells were sensitive to PARP inhibition, where concomitant depletion of 53BP1 restored BRCA1-dependent sensitivity to PARP inhibition. We conclude that cavin3 functions together with BRCA1 in multiple cancer-related pathways. The loss of cavin3 function may provide tumor cell survival by attenuating apoptotic sensitivity and hindering DNA repair under chronic stress conditions.


When cells become cancerous they often stop making certain proteins. This includes a protein known as cavin3 which resides in bulb-shaped pits of the membrane that surrounds the cell called caveolae. These structures work like stress detectors, picking up changes in the membrane and releasing proteins, such as cavin3, into the cell's interior. Past studies suggest that cavin3 might interact with a protein called BRCA1 that suppresses the formation of tumors. Cells with mutations in the gene for BRCA1 struggle to fix damage in their DNA, and have to rely on other repair proteins, such as PARPs (short for poly (ADP-ribose) polymerases). Blocking PARP proteins with drugs can kill cancer cells with problems in their BRCA1 proteins. However, it was unclear what role cavin3 plays in this mechanism. To investigate this, McMahon et al. exposed cells grown in the laboratory to DNA-damaging UV light to stimulate the release of cavin3 from caveolae. This revealed that cavin3 interacts with BRCA1 when cells are under stress, and helps stabilize the protein so it can perform DNA repairs. Cells without cavin3 showed decreased levels of the BRCA1 protein, but compensated for the loss of BRCA1 by increasing the levels of their PARP proteins. These cells also had increased DNA damage following treatment with drugs that block PARPs, similar to cancer cells carrying mutations in the gene for BRCA1. These findings suggest that cavin3 helps BRCA1 to suppress the formation of tumors, and therefore should be considered when developing new anti-cancer treatments.


Assuntos
Proteína BRCA1/metabolismo , Cavéolas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Estresse Fisiológico/genética , Apoptose/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteoma/genética , Proteômica
5.
Pharmacol Res ; 169: 105666, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33989764

RESUMO

Benzyl isothiocyanate (BITC) is one of the common isothiocyanates found in cruciferous vegetables such as broccoli, cabbage or watercress. Preclinical studies report of its effectiveness in the prevention and treatment against several cancers. This review aims to report and discuss findings on anticancer activities of BITC and its modes of action against 14 types of cancer. A literature search was conducted using the keywords "BITC" and "anticancer" from PubMed, Google Scholar and CINAHL Plus to obtain relevant research articles. This review highlights the anticancer efficacy of BITC through modulation of various signaling pathways involved in apoptosis, cell proliferation, cell cycle arrest, metastasis, angiogenesis, autophagy and the effects of BITC in combination with other drugs. With the available pharmacology evidence, we conclude that further studies are needed to validate its effectiveness in humans for further development and translation into prophylaxis or therapy by promoting optimal therapeutic effects and minimizing toxicity in cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Isotiocianatos/uso terapêutico , Neoplasias/prevenção & controle , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dieta , Humanos , Isotiocianatos/administração & dosagem , Isotiocianatos/farmacologia
6.
Sci Rep ; 11(1): 5894, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723357

RESUMO

The aetiology and progression of hypertension involves various endogenous systems, such as the renin angiotensin system, the sympathetic nervous system, and endothelial dysfunction. Recent data suggest that vascular inflammation may also play a key role in the pathogenesis of hypertension. This study sought to determine whether high intraluminal pressure results in vascular inflammation. Leukocyte adhesion was assessed in rat carotid arteries exposed to 1 h of high intraluminal pressure. The effect of intraluminal pressure on signaling mechanisms including reactive oxygen species production (ROS), arginase expression, and NFĸB translocation was monitored. 1 h exposure to high intraluminal pressure (120 mmHg) resulted in increased leukocyte adhesion and inflammatory gene expression in rat carotid arteries. High intraluminal pressure also resulted in a downstream signaling cascade of ROS production, arginase expression, and NFĸB translocation. This process was found to be angiotensin II-independent and mediated by the mechanosensor caveolae, as caveolin-1 (Cav1)-deficient endothelial cells and mice were protected from pressure-induced vascular inflammatory signaling and leukocyte adhesion. Cav1 deficiency also resulted in a reduction in pressure-induced glomerular macrophage infiltration in vivo. These findings demonstrate Cav1 is an important mechanosensor in pressure-induced vascular and renal inflammation.


Assuntos
Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Caveolina 1/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Sanguínea , Cavéolas/metabolismo , Adesão Celular , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/ultraestrutura , Hipertensão/patologia , Rim/patologia , Leucócitos/patologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Norepinefrina , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
7.
Front Oncol ; 11: 792290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004315

RESUMO

Opioids are administered to cancer patients in the period surrounding tumour excision, and in the management of cancer-associated pain. The effects of opioids on tumour growth and metastasis, and their consequences on disease outcome, continue to be the object of polarised, discrepant literature. It is becoming clear that opioids contribute a range of direct and indirect effects to the biology of solid tumours, to the anticancer immune response, inflammation, angiogenesis and importantly, to the tumour-promoting effects of pain. A common misconception in the literature is that the effect of opioid agonists equates the effect of the mu-opioid receptor, the major target of the analgesic effect of this class of drugs. We review the evidence on opioid receptor expression in cancer, opioid receptor polymorphisms and cancer outcome, the effect of opioid antagonists, especially the peripheral antagonist methylnaltrexone, and lastly, the evidence available of a role for opioids through non-opioid receptor mediated actions.

8.
Cancer Metastasis Rev ; 39(2): 415-433, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32358634

RESUMO

Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.


Assuntos
Cavéolas/metabolismo , Caveolinas/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Cavéolas/patologia , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia
9.
J Cell Mol Med ; 24(6): 3724-3738, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065471

RESUMO

In solid tumours, elevated interstitial fluid pressure (osmotic and hydrostatic pressure) is a barrier to drug delivery and correlates with poor prognosis. Glioblastoma (GBM) further experience compressive force when growing within a space limited by the skull. Caveolae are proposed to play mechanosensing roles, and caveola-forming proteins are overexpressed in GBM. We asked whether caveolae mediate the GBM response to osmotic pressure. We evaluated in vitro the influence of spontaneous or experimental down-regulation of caveola-forming proteins (caveolin-1, CAVIN1) on the proteolytic profile and invasiveness of GBM cells in response to osmotic pressure. In response to osmotic pressure, GBM cell lines expressing caveola-forming proteins up-regulated plasminogen activator (uPA) and/or matrix metalloproteinases (MMPs), some EMT markers and increased their in vitro invasion potential. Down-regulation of caveola-forming proteins impaired this response and prevented hyperosmolarity-induced mRNA expression of the water channel aquaporin 1. CRISPR ablation of caveola-forming proteins further lowered expression of matrix proteases and EMT markers in response to hydrostatic pressure, as a model of mechanical force. GBM respond to pressure by increasing matrix-degrading enzyme production, mesenchymal phenotype and invasion. Caveola-forming proteins mediate, at least in part, the pro-invasive response of GBM to pressure. This may represent a novel target in GBM treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Glioblastoma/metabolismo , Pressão Hidrostática , Osmose , Aquaporina 1/genética , Aquaporina 1/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/ultraestrutura , Cavéolas/ultraestrutura , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioblastoma/ultraestrutura , Humanos , Invasividade Neoplásica
10.
Sci Rep ; 10(1): 2634, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060379

RESUMO

Both hydrostatic and osmotic pressures are altered in the tumour microenvironment. Glioblastoma (GBM) is a brain tumour with high invasiveness and poor prognosis. We hypothesized that physical and osmotic forces regulate glioblastoma (GBM) invasiveness. The osmotic pressure of GBM cell culture medium was adjusted using sodium chloride or water. Alternatively, cells were subjected to increased hydrostatic force. The proteolytic profile and epithelial-mesenchymal transition (EMT) were investigated using zymography and real-time qPCR. The EMT markers assessed were Snail-1, Snail-2, N-cadherin, Twist and vimentin. Invasion was investigated in vitro using extracellular matrix-coated Transwell inserts. In response to osmotic and mechanical pressure, GBM cell lines U87 and U251 and patient-derived neural oncospheres upregulated the expression of urokinase-type plasminogen activator (uPA) and/or matrix metalloproteinases (MMPs) as well as some of the EMT markers tested. The adherent cell lines invaded more when placed in media of increased osmolality. Therefore, GBM respond to osmotic or mechanical pressure by increasing matrix degrading enzyme production, and adopting a phenotype reminiscent of EMT. Better understanding the molecular and cellular mechanisms by which increased pressure promotes GBM invasiveness may help to develop innovative therapeutic approaches.


Assuntos
Neoplasias Encefálicas/patologia , Transição Epitelial-Mesenquimal , Glioblastoma/patologia , Metaloproteinases da Matriz/metabolismo , Invasividade Neoplásica/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Glioblastoma/metabolismo , Humanos , Pressão Hidrostática , Pressão Osmótica , Microambiente Tumoral
11.
J Neurooncol ; 143(2): 207-220, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30949900

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common primary brain cancer. The average survival time for the majority of patients is approximately 15 months after diagnosis. A major feature of GBM that contributes to its poor prognosis is its high invasiveness. Caveolae are plasma membrane subdomains that participate in numerous biological functions. Caveolin-1 and Caveolae Associated Protein 1 (CAVIN1), formerly termed Polymerase I and Transcript Release Factor, are both necessary for caveola formation. We hypothesized that high expression of caveola-forming proteins in GBM promotes invasiveness via modulation of the production of matrix-degrading enzymes. METHODS: The mRNA expression of caveola-forming proteins and matrix proteases in GBM samples, and survival after stratifying patients according to caveolin-1 or CAVIN1 expression, were analyzed from TCGA and REMBRANDT databases. The proteolytic profile of cell lines expressing or devoid of caveola-forming proteins was investigated using zymography and real-time qPCR. Invasion through basement membrane-like protein was investigated in vitro. RESULTS: Expression of both caveolin-1 and CAVIN1 was increased in GBM compared to normal samples and correlated with expression of urokinase plasminogen activator (uPA) and gelatinases. High expression of caveola-forming proteins was associated with shorter survival time. GBM cell lines capable of forming caveolae expressed more uPA and matrix metalloproteinase-2 (MMP-2) and/or -9 (MMP-9) and were more invasive than GBM cells devoid of caveola-forming proteins. Experimental manipulation of caveolin-1 or CAVIN1 expression in GBM cells recapitulated some, but not all of these features. Caveolae modulate GBM cell invasion in part via matrix protease expression.


Assuntos
Neoplasias Encefálicas/patologia , Caveolina 1/metabolismo , Glioblastoma/patologia , Proteínas de Ligação a RNA/metabolismo , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Células Cultivadas , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Knockout , Invasividade Neoplásica , Prognóstico , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética
12.
Sci Rep ; 9(1): 1716, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737457

RESUMO

The aims of this study are to investigate the selective cytotoxic activity of supercritical carbon dioxide (scCO2)-extracted freeze-dried leaf juice (FDLJ) of Carica papaya on squamous cell carcinoma (SCC25) cells, and to delineate the best small scale extraction parameters allowing maximal extract activity. Using scCO2 as a solvent, six operating parameters were studied and the supercritical fluid extraction (SFE) process investigated using a factorial design 26-2. The processing values promoting cytotoxic activity towards SCC-25 are: high pressure (250 bar), low temperature (35 °C), extended processing time (180 minutes), as well as a large amount of starting material (5 g). The factorial experimental design successfully identified the key parameters controlling the SFE of molecules cytotoxic to SCC cells from C. papaya juice. This study also validated the extraction method and showed that the SFE yield was reproducible. The chromatographic and mass spectrometric profiles of the scCO2 extract acquired with high-resolution quadrupole time-of-flight mass spectrometry (LC-QToF-MS) were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds were likely to be mainly vitamins and phytosterols, some of which are documented to be cytotoxic to cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dióxido de Carbono/química , Carica/química , Sucos de Frutas e Vegetais/análise , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Humanos , Espectrometria de Massas , Fitosteróis/isolamento & purificação , Fitosteróis/farmacologia , Folhas de Planta/química , Vitaminas/isolamento & purificação , Vitaminas/farmacologia
13.
Clin Cancer Res ; 24(10): 2319-2327, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29511031

RESUMO

Purpose: The purpose of this study is to investigate the potential interplay between opioid analgesia and tumor metastasis through modulation of µ-opioid receptor (MOR), Toll-like receptor 4 (TLR4) activation, and matrix degradation potential.Experimental Design: Plasma samples were collected from 60 patients undergoing elective lower limb joint replacement preoperatively and at 3, 6, and 24 hours after surgery; pain scores were documented at the same time points. Opioid administration was recorded and converted into morphine IV equivalents. Plasma samples were also collected from 10 healthy volunteers. Alphascreen cyclic AMP assay and MOR-overexpressing cells were employed to quantify MOR activation. HEK-Blue hTLR4 were utilized to measure TLR4 activation. Circulating matrix metalloprotease and tissue inhibitor of matrix protease activities were assessed by gelatin zymography and reverse zymography, respectively.Results: Postoperative plasma samples displayed the ability to activate MOR and to inhibit lipopolysaccharide (LPS)-induced TLR4 activation. Linear mixed model analysis revealed that MOR activation had a significant effect on inhibition of LPS-induced TLR4 activation. Furthermore, TLR4 had a significant effect to explain pain scores. Postoperative samples also displayed altered circulating matrix-degrading enzymes activity potential, but this was correlated neither to opioid administration nor to MOR activation potential.Conclusions: Our results show for the first time that (i) opioids administered to surgery patients result in modulation of ligand-induced TLR4 activation and (ii) postoperative pain is associated with increased circulating TLR4 activation potential. Our study further promotes the use of MOR activation potential rather than opioid intake in clinical studies measuring opioid exposure at a given time point. Clin Cancer Res; 24(10); 2319-27. ©2018 AACR.


Assuntos
Analgésicos Opioides/farmacologia , Hemodinâmica/efeitos dos fármacos , Neoplasias/metabolismo , Receptores Opioides mu/agonistas , Receptor 4 Toll-Like/agonistas , Analgésicos Opioides/administração & dosagem , Biomarcadores , Dor do Câncer/diagnóstico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Humanos , Estadiamento de Neoplasias , Neoplasias/complicações , Neoplasias/patologia , Neoplasias/cirurgia , Medição da Dor , Assistência Perioperatória , Proteólise
14.
FASEB J ; 31(12): 5208-5216, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28784632

RESUMO

Opioids modulate the tumor microenvironment with potential functional consequences for tumor growth and metastasis. We evaluated the effects of morphine administration on the circulating proteolytic profile of tumor-free mice. Serum from morphine-treated (1 or 10 mg/kg, i.p. every 12 h) or saline-treated mice was collected at different time points and tested ex vivo in endothelial, lymphatic endothelial, and breast cancer cell migration assays. Serum from mice that were treated with 10 mg/kg morphine for 3 d displayed reduced chemotactic potential for endothelial and breast cancer cells, and elicited reduced cancer cell invasion through reconstituted basement membrane compared with serum from saline controls. This was associated with decreased circulating matrix metalloproteinase 9 (MMP-9) and increased circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) and TIMP-3/4 as assessed by zymography and reverse zymography. By using quantitative RT-PCR, we confirmed morphine-induced alterations in MMP-9 and TIMP expression and identified organs, including the liver and spleen, in which these changes originated. Pharmacologic inhibition of MMP-9 abrogated the difference in chemotactic attraction between serum from saline-treated and morphine-treated mice, which indicated that reduced proteolytic ability mediated the decreased migration toward serum from morphine-treated mice. This novel mechanism may enable morphine administration to promote an environment that is less conducive to tumor growth, invasion, and metastasis.-Xie, N., Khabbazi, S., Nassar, Z. D., Gregory, K., Vithanage, T., Anand-Apte, B., Cabot, P. J., Sturgess, D., Shaw, P. N., Parat, M.-O. Morphine alters the circulating proteolytic profile in mice: functional consequences on cellular migration and invasion.


Assuntos
Movimento Celular/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Morfina/farmacologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Analgésicos Opioides/farmacologia , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-3/genética
15.
ACS Chem Neurosci ; 8(9): 1901-1912, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28650631

RESUMO

The biphenyl neolignan honokiol is a neuroprotectant which has been proposed as a treatment for central nervous system disorders such as Alzheimer's disease (AD). The death of cholinergic neurons in AD is attributed to multiple factors, including accumulation and fibrillation of amyloid beta peptide (Aß) within the brain; metal ion toxicity; and oxidative stress. In this study, we used a transgenic Caenorhabditis elegans model expressing full length Aß42 as a convenient in vivo system for examining the effect of honokiol against Aß-induced toxicity. Furthermore, honokiol was evaluated for its ability to inhibit Aß42 oligomerization and fibrillation; inhibit acetylcholinesterase and butyrylcholinesterase; scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals; and chelate iron(II). Honokiol displayed activity similar to that of resveratrol and (-)-epigallocatechin gallate (EGCG) in delaying Aß42-induced paralysis in C. elegans, and it exhibited moderate-to-weak ability to inhibit Aß42 on-pathway aggregation, inhibit cholinesterases, scavenge DPPH radicals, and chelate iron(II). Moreover, honokiol was found to be chemically stable relative to EGCG, which was highly unstable. Together with its good drug-likeness and brain availability, these results suggest that honokiol may be amenable to drug development and that the synthesis of honokiol analogues to optimize these properties should be considered.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Compostos de Bifenilo/farmacologia , Quelantes/farmacologia , Inibidores da Colinesterase/farmacologia , Sequestradores de Radicais Livres/farmacologia , Lignanas/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Caenorhabditis elegans , Catequina/análogos & derivados , Catequina/farmacologia , Quelantes/química , Inibidores da Colinesterase/química , Estabilidade de Medicamentos , Sequestradores de Radicais Livres/química , Humanos , Ferro/química , Ferro/metabolismo , Lignanas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Paralisia/tratamento farmacológico , Paralisia/metabolismo , Picratos/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Resveratrol , Estilbenos/farmacologia
16.
ACS Appl Mater Interfaces ; 9(11): 9470-9483, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28252278

RESUMO

Conventional oral drug formulations for colonic diseases require the administration of high doses of drug to achieve effective drug concentrations at the target site. However, this exposes patients to serious systemic toxicity in order to achieve efficacy. To overcome this problem, an oral drug delivery system was developed by loading a large amount (ca. 34% w/w) of prednisolone into 3-aminopropyl-functionalized mesoporous silica nanoparticles (MCM-NH2) and targeting prednisolone release to the colon by coating the nanoparticle with succinylated ε-polylysine (SPL). We demonstrate for the first time the pH-responsive ability of SPL as a "nanogate" to selectively release prednisolone in the pH conditions of the colon (pH 5.5-7.4) but not in the more acidic conditions of the stomach (pH 1.9) or small intestine (pH 5.0). In addition to targeting drug delivery to the colon, we explored whether the nanoparticles could deliver cargo intracellularly to immune cells (RAW 264.7 macrophages) and intestinal epithelial cells (LS 174T and Caco-2 adenocarcinoma cell lines). To trace uptake, MCM-NH2 were loaded with a cell membrane-impermeable dye, sulforhodamine B. The SPL-coated nanoparticles were able to deliver the dye intracellularly to RAW 264.7 macrophages and the intestinal epithelial cancer cells, which offers a highly promising and novel drug delivery system for diseases of the colon such as inflammatory bowel disease and colorectal cancer.


Assuntos
Nanopartículas , Animais , Células CACO-2 , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Polilisina , Porosidade , Dióxido de Silício
17.
Front Pharmacol ; 7: 441, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909407

RESUMO

Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages.

18.
Sci Rep ; 6: 31572, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27514308

RESUMO

Interactions between the various cell types that constitute a solid tumour are essential to the biology of the tumour. We evaluated the effect of morphine on the proangiogenic interaction taking place between macrophages and breast cancer cells in vitro. The conditioned medium (CM) from breast cancer cells co-cultured with macrophages elicited endothelial cell proliferation and tube formation. This effect was inhibited if the co-culture occurred in the presence of morphine. The CM from breast cancer cells or macrophages grown individually, whether or not prepared in the presence of morphine, was ineffective in stimulating EC proliferation or tube formation. Using a mouse antibody array, we identified several angiogenesis-regulating factors differentially expressed in the CM of co-cultured cells prepared in the presence or absence of morphine, amongst which interleukin (IL)-6, tumour necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF)-A. VEGF was induced in both cell types by the co-culture and this was prevented by morphine in a non-naloxone reversible fashion. The effect of CM from co-cultured cells on endothelial tube formation, but not proliferation, was prevented by anti-VEGF neutralizing antibody. Our results indicate that morphine prevents, in part via modulating VEGF-A expression, the pro-angiogenic interaction between macrophages and breast cancer cells.


Assuntos
Comunicação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Macrófagos/metabolismo , Neoplasias Mamárias Animais/metabolismo , Morfina/farmacologia , Neovascularização Patológica/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Macrófagos/patologia , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Células RAW 264.7
19.
PLoS One ; 11(2): e0147956, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26829042

RESUMO

Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation.


Assuntos
Carcinoma de Células Escamosas/patologia , Carica/química , Havaiano Nativo ou Outro Ilhéu do Pacífico , Extratos Vegetais/farmacologia , Folhas de Planta/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofila/análogos & derivados , Clorofila/farmacologia , Cromatografia Líquida , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Espectrometria de Massas , Metabolômica , Análise Multivariada , Padrões de Referência
20.
Toxins (Basel) ; 8(1)2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26712788

RESUMO

In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.


Assuntos
Antineoplásicos/farmacologia , Carica , Extratos Vegetais/farmacologia , Antineoplásicos/química , Carcinoma de Células Escamosas , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Humanos , Espectrometria de Massas , Fenóis/análise , Extratos Vegetais/química , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA