Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Haematologica ; 109(3): 824-834, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439337

RESUMO

Clonal expansion of CD5-expressing B cells, commonly designated as monoclonal B lymphocytosis (MBL), is a precursor condition for chronic lymphocytic leukemia (CLL). The mechanisms driving subclinical MBL B-cell expansion and progression to CLL, occurring in approximately 1% of affected individuals, are unknown. An autonomously signaling B-cell receptor (BCR) is essential for the pathogenesis of CLL. The objectives of this study were functional characterization of the BCR of MBL in siblings of CLL patients and a comparison of genetic variants in MBL-CLL sibling pairs. Screening of peripheral blood by flow cytometry detected 0.2-480 clonal CLL-phenotype cells per microliter (median: 37/µL) in 34 of 191 (17.8%) siblings of CLL patients. Clonal BCR isolated from highly purified CLL-phenotype cells induced robust calcium mobilization in BCR-deficient murine pre-B cells in the absence of external antigen and without experimental crosslinking. This autonomous BCR signal was less intense than the signal originating from the CLL BCR of their CLL siblings. According to genotyping by single nucleotide polymorphism array, whole exome, and targeted panel sequencing, CLL risk alleles were found with high and similar prevalence in CLL patients and MBL siblings, respectively. Likewise, the prevalence of recurrent CLL-associated genetic variants was similar between CLL and matched MBL samples. However, copy number variations and small variants were frequently subclonal in MBL cells, suggesting their acquisition during subclinical clonal expansion. These findings support a stepwise model of CLL pathogenesis, in which autonomous BCR signaling leads to a non-malignant (oligo)clonal expansion of CD5+ B cells, followed by malignant progression to CLL after acquisition of pathogenic genetic variants.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia , Linfocitose , Humanos , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Irmãos , Variações do Número de Cópias de DNA , Linfocitose/genética , Receptores de Antígenos de Linfócitos B/genética , Fenótipo
2.
Commun Biol ; 6(1): 1174, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980390

RESUMO

TAZ::CAMTA1 is a fusion protein found in over 90% of Epithelioid Hemangioendothelioma (EHE), a rare vascular sarcoma with an unpredictable disease course. To date, how TAZ::CAMTA1 initiates tumour formation remains unexplained. To study the oncogenic mechanism leading to EHE initiation, we developed a model system whereby TAZ::CAMTA1 expression is induced by doxycycline in primary endothelial cells. Using this model, we establish that upon TAZ::CAMTA1 expression endothelial cells rapidly enter a hypertranscription state, triggering considerable DNA damage. As a result, TC-expressing cells become trapped in S phase. Additionally, TAZ::CAMTA1-expressing endothelial cells have impaired homologous recombination, as shown by reduced BRCA1 and RAD51 foci formation. Consequently, the DNA damage remains unrepaired and TAZ::CAMTA1-expressing cells enter senescence. Knockout of Cdkn2a, the most common secondary mutation found in EHE, allows senescence bypass and uncontrolled growth. Together, this provides a mechanistic explanation for the clinical course of EHE and offers novel insight into therapeutic options.


Assuntos
Hemangioendotelioma Epitelioide , Transativadores , Humanos , Transativadores/genética , Células Endoteliais/patologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Ligação ao Cálcio/genética , Fatores de Transcrição/genética , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patologia , Proteínas de Fusão Oncogênica/genética , Instabilidade Genômica
3.
iScience ; 26(9): 107583, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37694151

RESUMO

During embryonic development, all blood progenitors are initially generated from endothelial cells that acquire a hemogenic potential. Blood progenitors emerge through an endothelial-to-hematopoietic transition regulated by the transcription factor RUNX1. To date, we still know very little about the molecular characteristics of hemogenic endothelium and the molecular changes underlying the transition from endothelium to hematopoiesis. Here, we analyzed at the single cell level a human embryonic stem cell-derived endothelial population containing hemogenic potential. RUNX1-expressing endothelial cells, which harbor enriched hemogenic potential, show very little molecular differences to their endothelial counterpart suggesting priming toward hemogenic potential rather than commitment. Additionally, we identify CD82 as a marker of the endothelium-to-hematopoietic transition. CD82 expression is rapidly upregulated in newly specified blood progenitors then rapidly downregulated as further differentiation occurs. Together our data suggest that endothelial cells are first primed toward hematopoietic fate, and then rapidly undergo the transition from endothelium to blood.

5.
Fam Cancer ; 21(1): 85-90, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219493

RESUMO

Bloom syndrome (BS) is a genomic and chromosomal instability disorder with prodigious cancer predisposition caused by pathogenic variants in BLM. We report the clinical and genetic details of a boy who first presented with infantile fibrosarcoma (IFS) at the age of 6 months and subsequently was diagnosed with BS at the age of 9 years. Molecular analysis identified the pathogenic germline BLM sequence variants (c.1642C>T and c.2207_2212delinsTAGATTC). This is the first report of IFS related to BS, for which we show that both BLM alleles are maintained in the tumor and demonstrate a TPM3-NTKR1 fusion transcript in the IFS. Our communication emphasizes the importance of long-term follow up after treatment for pediatric neoplastic conditions, as clues to important genetic entities might manifest later, and the identification of a heritable tumor predisposition often leads to changes in patient surveillance and management.


Assuntos
Síndrome de Bloom , Fibrossarcoma , Alelos , Síndrome de Bloom/genética , Criança , Fibrossarcoma/genética , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Masculino , RecQ Helicases/genética , Tropomiosina/genética , Tropomiosina/uso terapêutico
6.
Exp Hematol ; 107: 1-8, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958895

RESUMO

High expression of the transcriptional regulator EVI1 encoded at the MECOM locus at 3q26 is one of the most aggressive oncogenic drivers in acute myeloid leukemia (AML) and carries a very poor prognosis. How EVI1 confers leukemic transformation and chemotherapy resistance in AML is subject to important ongoing clinical and experimental studies. Recent discoveries have revealed critical details on genetic mechanisms of the activation of EVI1 overexpression and downstream events of aberrantly high EVI1 expression. Here we review and discuss aspects concerning the protein interactions of EVI1 and the related proteins MDS-EVI1 and ΔEVI1 from the perspective of their potential for therapeutic intervention.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Prognóstico , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884820

RESUMO

Activation-induced deaminase (AID) is required for somatic hypermutation in immunoglobulin genes, but also induces off-target mutations. Follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL), the most frequent types of indolent B-cell tumors, are exposed to AID activity during lymphomagenesis. We designed a workflow integrating de novo mutational signatures extraction and fitting of COSMIC (Catalogue Of Somatic Mutations In Cancer) signatures, with tridimensional chromatin conformation data (Hi-C). We applied the workflow to exome sequencing data from lymphoma samples. In 33 FL and 30 CLL samples, 42% and 34% of the contextual mutations could be traced to a known AID motif. We demonstrate that both CLL and FL share mutational processes dominated by spontaneous deamination, failures in DNA repair, and AID activity. The processes had equiproportional distribution across active and nonactive chromatin compartments in CLL. In contrast, canonical AID activity and failures in DNA repair pathways in FL were significantly higher within the active chromatin compartment. Analysis of DNA repair genes revealed a higher prevalence of base excision repair gene mutations (p = 0.02) in FL than CLL. These data indicate that AID activity drives the genetic landscapes of FL and CLL. However, the final result of AID-induced mutagenesis differs between these lymphomas depending on chromatin compartmentalization and mutations in DNA repair pathways.


Assuntos
Citidina Desaminase/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Folicular/patologia , Alelos , Cromatina/metabolismo , Análise Mutacional de DNA , Reparo do DNA/genética , Bases de Dados Genéticas , Frequência do Gene , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Linfoma Folicular/genética , Polimorfismo de Nucleotídeo Único
8.
Front Cell Dev Biol ; 9: 812639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977046

RESUMO

The transcription factor RUNX1 is a master regulator of blood cell specification. During embryogenesis, hematopoietic progenitors are initially generated from hemogenic endothelium through an endothelium-to-hematopoietic transition controlled by RUNX1. Several studies have dissected the expression pattern and role of RUNX1 isoforms at the onset of mouse hematopoiesis, however the precise pattern of RUNX1 isoform expression and biological output of RUNX1-expressing cells at the onset of human hematopoiesis is still not fully understood. Here, we investigated these questions using a RUNX1b:VENUS RUNX1c:TOMATO human embryonic stem cell line which allows multi-parameter single cell resolution via flow cytometry and isolation of RUNX1b-expressing cells for further analysis. Our data reveal the sequential expression of the two RUNX1 isoforms with RUNX1b expressed first in a subset of endothelial cells and during the endothelial to hematopoietic transition while RUNX1c only becomes expressed in fully specified blood cells. Furthermore, our data show that RUNX1b marks endothelial cells endowed with hemogenic potential and that RUNX1b expression level determines hemogenic competency in a dose-dependent manner. Together our data reveal the dynamic of RUNX1 isoforms expression at the onset of human blood specification and establish RUNX1b isoform as the earliest known marker for hemogenic competency.

9.
Cell Death Dis ; 11(10): 878, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082307

RESUMO

The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out a mass spectrometry (MS) analysis of EVI1 in AML and detected dynamic phosphorylation at serine 436 (S436). Wild-type EVI1 (EVI1-WT) with S436 available for phosphorylation, but not non-phosphorylatable EVI1-S436A, conferred haematopoietic progenitor cell self-renewal and was associated with significantly higher organised transcriptional patterns. In silico modelling of EVI1-S436 phosphorylation showed reduced affinity to CtBP1, and CtBP1 showed reduced interaction with EVI1-WT compared with EVI1-S436A. The motif harbouring S436 is a target of CDK2 and CDK3 kinases, which interacted with EVI1-WT. The methyltransferase DNMT3A bound preferentially to EVI1-WT compared with EVI1-S436A, and a hypomethylated cell population associated by EVI1-WT expression in murine haematopoietic progenitors is not maintained with EVI1-S436A. These data point to EVI1-S436 phosphorylation directing functional protein interactions for haematopoietic self-renewal. Targeting EVI1-S436 phosphorylation may be of therapeutic benefit when treating EVI1-driven leukaemia.


Assuntos
Oxirredutases do Álcool/metabolismo , Autorrenovação Celular/fisiologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Metilação de DNA/fisiologia , DNA Metiltransferase 3A , Metilases de Modificação do DNA/metabolismo , Humanos , Fosforilação , Prognóstico , Serina/metabolismo , Fatores de Transcrição/metabolismo
10.
Mol Biol Rep ; 47(10): 8293-8300, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32979164

RESUMO

Aberrantly high expression of EVI1 in acute myeloid leukaemia (AML) is associated with poor prognosis. For targeted treatment of EVI1 overexpressing AML a more detailed understanding of aspects of spatiotemporal interaction dynamics of the EVI1 protein is important. EVI1 overexpressing SB1690CB AML cells were used for quantification and protein interaction studies of EVI1 and ΔEVI1. Cells were cell cycle-synchronised by mimosine and nocodazole treatment and expression of EVI1 and related proteins assessed by western blot, immunoprecipitation and immunofluorescence. EVI1 protein levels oscillate through the cell cycle, and EVI1 is degraded partly by the proteasome complex. Both EVI1 and ΔEVI1 interact with the co-repressor CtBP1 but dissociate from CtBP1 complexes during mitosis. Furthermore, a large fraction of EVI1, but not ΔEVI1 or CtBP1, resides in the nuclear matrix. In conclusion, EVI1- protein levels and EVI1-CtBP1 interaction dynamics vary though the cell cycle and differ between EVI1 and ΔEVI1. These data ad to the functional characterisation of the EVI1 protein in AML and will be important for the development of targeted therapeutic approaches for EVI1-driven AML.


Assuntos
Oxirredutases do Álcool/biossíntese , Relógios Biológicos , Ciclo Celular , Proteínas de Ligação a DNA/biossíntese , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/biossíntese , Oxirredutases do Álcool/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Leucemia Mieloide Aguda/genética , Proteína do Locus do Complexo MDS1 e EVI1/genética
11.
Nucleic Acids Res ; 46(15): 7662-7674, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29939287

RESUMO

The transcriptional regulator EVI1 has an essential role in early hematopoiesis and development. However, aberrantly high expression of EVI1 has potent oncogenic properties and confers poor prognosis and chemo-resistance in leukemia and solid tumors. To investigate to what extent EVI1 function might be regulated by post-translational modifications we carried out mass spectrometry- and antibody-based analyses and uncovered an ATM-mediated double phosphorylation of EVI1 at the carboxy-terminal S858/S860 SQS motif. In the presence of genotoxic stress EVI1-WT (SQS), but not site mutated EVI1-AQA was able to maintain transcriptional patterns and transformation potency, while under standard conditions carboxy-terminal mutation had no effect. Maintenance of hematopoietic progenitor cell clonogenic potential was profoundly impaired with EVI1-AQA compared with EVI1-WT, in particular in the presence of genotoxic stress. Exploring mechanistic events underlying these observations, we showed that after genotoxic stress EVI1-WT, but not EVI1-AQA increased its level of association with its functionally essential interaction partner CtBP1, implying a role for ATM in regulating EVI1 protein interactions via phosphorylation. This aspect of EVI1 regulation is therapeutically relevant, as chemotherapy-induced genotoxicity might detrimentally sustain EVI1 function via stress response mediated phosphorylation, and ATM-inhibition might be of specific targeted benefit in EVI1-overexpressing malignancies.


Assuntos
Oxirredutases do Álcool/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Regulação Leucêmica da Expressão Gênica , Proteína do Locus do Complexo MDS1 e EVI1/genética , Doença Aguda , Oxirredutases do Álcool/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Proteína do Locus do Complexo MDS1 e EVI1/química , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Mutação , Fosforilação
12.
Cell Death Dis ; 8(6): e2875, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617445

RESUMO

BRCA2 encodes a protein with a fundamental role in homologous recombination that is essential for normal development. Carrier status of mutations in BRCA2 is associated with familial breast and ovarian cancer, while bi-allelic BRCA2 mutations can cause Fanconi anemia (FA), a cancer predisposition syndrome with cellular cross-linker hypersensitivity. Cancers associated with BRCA2 mutations can acquire chemo-resistance on relapse. We modeled acquired cross-linker resistance with an FA-derived BRCA2-mutated acute myeloid leukemia (AML) platform. Associated with acquired cross-linker resistance was the expression of a functional BRCA2 protein variant lacking exon 5 and exon 7 (BRCA2ΔE5+7), implying a role for BRCA2 splicing for acquired chemo-resistance. Integrated network analysis of transcriptomic and proteomic differences for phenotyping of BRCA2 disruption infers impact on transcription and chromatin remodeling in addition to the DNA damage response. The striking overlap with transcriptional profiles of FA patient hematopoiesis and BRCA mutation associated ovarian cancer helps define and explicate the 'BRCAness' profile.


Assuntos
Processamento Alternativo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Resistencia a Medicamentos Antineoplásicos , Genes BRCA2 , Mutação , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Éxons , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fenótipo , Splicing de RNA , Transcrição Gênica
13.
Int J Mol Sci ; 17(9)2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27563873

RESUMO

Tribbles homolog 2 (TRIB2) is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Studies of TRIB2 indicate that many of the molecular interactions between the single Drosophila Tribbles (Trbl) protein and interacting partners are evolutionary conserved. In this study, we examined the relationship between TRIB2 and cell division cycle 25 (CDC25) family of dual-specificity protein phosphatases (mammalian homologues of Drosophila String), which are key physiological cell cycle regulators. Using co-immunoprecipitation we demonstrate that TRIB2 interacts with CDC25B and CDC25C selectively. Forced overexpression of TRIB2 caused a marked decrease in total CDC25C protein levels. Following inhibition of the proteasome, CDC25C was stabilized in the nuclear compartment. This implicates TRIB2 as a regulator of nuclear CDC25C turnover. In complementary ubiquitination assays, we show that TRIB2-mediated degradation of CDC25C is associated with lysine-48-linked CDC25C polyubiquitination driven by the TRIB2 kinase-like domain. A cell cycle associated role for TRIB2 is further supported by the cell cycle regulated expression of TRIB2 protein levels. Our findings reveal mitotic CDC25C as a new target of TRIB2 that is degraded via the ubiquitin proteasome system. Inappropriate CDC25C regulation could mechanistically underlie TRIB2 mediated regulation of cellular proliferation in neoplastic cells.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fosfatases cdc25/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fosfatases de Especificidade Dupla/genética , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia , Fosfatases cdc25/genética
14.
PLoS One ; 8(9): e73596, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023889

RESUMO

There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.


Assuntos
Reepitelização/efeitos dos fármacos , Pele/efeitos dos fármacos , Hormônio Liberador de Tireotropina/farmacologia , Idoso , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Estrogênios/farmacologia , Evolução Molecular , Feminino , Humanos , Queratina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Precursores de Proteínas/metabolismo , Soro/metabolismo , Pele/citologia , Pele/metabolismo , Regulação para Cima/efeitos dos fármacos , Xenopus
15.
Methods Mol Biol ; 916: 141-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22914938

RESUMO

In Xenopus the first blood cells to differentiate in the embryo are the primitive myeloid lineages, which arise from the anterior ventral blood islands during the neurula stages. Primitive myeloid cells (PMCs) will give rise to the embryonic pool of neutrophils and macrophages, a highly migratory population of cells with various functions during development and tissue repair. Understanding the development and behavior of PMCs depends on our ability to label, manipulate, and image these cells. Xenopus embryos have several advantages in the study of PMCs, including a well-established fate map and the possibility of performing transplants in order to label these cells. In addition, Xenopus embryos are easy to manipulate and their external development and transparency at the tadpole stages make them amenable to imaging techniques. Here we describe two methods for labeling primitive myeloid progenitor cells during early Xenopus development.


Assuntos
Células Progenitoras Mieloides/metabolismo , Coloração e Rotulagem/métodos , Xenopus laevis/embriologia , Animais , Blastômeros/citologia , Blastômeros/metabolismo , Diferenciação Celular , Embrião não Mamífero/citologia , Feminino , Microinjeções , Imagem Molecular , Morfolinos/genética , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/transplante , RNA Mensageiro/genética , Transplante de Células-Tronco
16.
Biochem Biophys Res Commun ; 412(1): 13-9, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21763285

RESUMO

The disruption of stromal cell signals in prostate tissue microenvironment influences the development of prostate cancer to androgen independence. 1α,25-Dihydroxyvitamin D(3) (1,25D(3)) and glucocorticoids, either alone or in combination, have been investigated as alternatives for the treatment of advanced prostate cancers that fails androgen therapies. The effects of glucocorticoids are mediated by the intracellular glucocorticoid receptor (GR). Similarly, the effect of 1,25D(3) is mediated by the 1,25D(3) nuclear receptor (VDR). In this study, fibroblasts from benign- (BAS) and carcinoma-associated stroma (CAS) were isolated from human prostates to characterize VDR and GR function as transcription factors in prostate stroma. The VDR-mediated transcriptional activity assessed using the CYP24-luciferase reporter was limited to 3-fold induction by 1,25D(3) in 9 out of 13 CAS (70%), as compared to >10-fold induction in the BAS clinical sample pair. Expression of His-tagged VDR (Ad-his-VDR) failed to recover the low transcriptional activity of the luciferase reporter in 7 out of 9 CAS. Interestingly, expression of Ad-his-VDR successfully recovered receptor-mediated induction in 2 out of the 9 CAS analyzed, suggesting that changes in the receptor protein itself was responsible for decreased response and resistance to 1,25D(3) action. Conversely, VDR-mediated transcriptional activity was more efficient in 4 out of 13 CAS (30%), as compared to the BAS sample pair. Consistent with the reduced response to 1,25D(3) observed in CAS, chromatin immunoprecipitation (ChIP) assays indicated decreased recruitment of coactivators SRC-1/CBP, without major changes in the recruitment of VDR to the CYP24 promoter. In addition, we observed that GR-mediated transcriptional activity was also altered in CAS, as compared to BAS. Disruption of coactivators SRC-1/CBP recruitment may promote hormone resistance in CaP, and highlights the relevance of molecular diagnosis and drug design in tumor cell microenvironment.


Assuntos
Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Receptores de Calcitriol/metabolismo , Receptores de Glucocorticoides/metabolismo , Microambiente Tumoral/genética , Humanos , Masculino , Coativador 1 de Receptor Nuclear/metabolismo , Neoplasias da Próstata/metabolismo , Receptores de Calcitriol/genética , Receptores de Glucocorticoides/genética , Células Estromais/metabolismo , Células Tumorais Cultivadas
17.
J Cell Physiol ; 222(2): 336-46, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19885846

RESUMO

1alpha,25-dihydroxy vitamin D(3) (vitamin D(3)) has an important role during osteoblast differentiation as it directly modulates the expression of key bone-related genes. Vitamin D(3) binds to the vitamin D(3) receptor (VDR), a member of the superfamily of nuclear receptors, which in turn interacts with transcriptional activators to target this regulatory complex to specific sequence elements within gene promoters. Increasing evidence demonstrates that the architectural organization of the genome and regulatory proteins within the eukaryotic nucleus support gene expression in a physiological manner. Previous reports indicated that the VDR exhibits a punctate nuclear distribution that is significantly enhanced in cells grown in the presence of vitamin D(3). Here, we demonstrate that in osteoblastic cells, the VDR binds to the nuclear matrix in a vitamin D(3)-dependent manner. This interaction of VDR with the nuclear matrix occurs rapidly after vitamin D(3) addition and does not require a functional VDR DNA-binding domain. Importantly, nuclear matrix-bound VDR colocalizes with its transcriptional coactivator DRIP205/TRAP220/MED1 which is also matrix bound. Together these results indicate that after ligand stimulation the VDR rapidly enters the nucleus and associates with the nuclear matrix preceding vitamin D(3)-transcriptional upregulation.


Assuntos
Calcitriol/metabolismo , Matriz Nuclear/metabolismo , Osteoblastos/metabolismo , Receptores de Calcitriol/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , DNA/metabolismo , Humanos , Ligantes , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Receptores de Calcitriol/genética , Proteínas Recombinantes de Fusão/metabolismo , Ativação Transcricional , Transdução Genética
18.
Blood ; 114(1): 40-8, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19420355

RESUMO

The molecular mechanisms that underlie the development of primitive myeloid cells in vertebrate embryos are not well understood. Here we characterize the role of cebpa during primitive myeloid cell development in Xenopus. We show that cebpa is one of the first known hematopoietic genes expressed in the embryo. Loss- and gain-of-function studies show that it is both necessary and sufficient for the development of functional myeloid cells. In addition, we show that cebpa misexpression leads to the precocious induction of myeloid cell markers in pluripotent prospective ectodermal cells, without the cells transitioning through a general mesodermal state. Finally, we use live imaging to show that cebpa-expressing cells exhibit many attributes of terminally differentiated myeloid cells, such as highly active migratory behavior, the ability to quickly and efficiently migrate toward wounds and phagocytose bacteria, and the ability to enter the circulation. Thus, C/EPBalpha is the first known single factor capable of initiating an entire myelopoiesis pathway in pluripotent cells in the embryo.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Células-Tronco Embrionárias/fisiologia , Mielopoese/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteína alfa Estimuladora de Ligação a CCAAT/antagonistas & inibidores , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Primers do DNA/genética , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Mielopoese/genética , Fenótipo , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Xenopus/embriologia , Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética
19.
J Steroid Biochem Mol Biol ; 103(3-5): 731-6, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17368189

RESUMO

The 1alpha,25-dihydroxy-vitamin D(3) (1alpha,25(OH)(2)D(3)) mediated gene transcription in primary cultures of human prostate cells was analyzed using an adenoviral luciferase expression reporter under the control of the 25-hydroxy-vitamin D(3)-24-hydroxylase (CYP24) gene promoter. Stromal cells isolated from benign and malignant associated stroma (BAS and CAS) of a human clinical sample have been determined to contain similar levels of functional 1alpha,25(OH)(2)D(3) receptor (VDR). However, VDR-mediated reporter activity of the luciferase reporter has been found to be limited 7-9-fold in CAS compared to 14-16-fold in BAS. Chromatin immunoprecipitation (ChIP) assays indicate that in the absence of added ligand VDR interact with the silencing mediator for retinoid and thyroid hormone (SMRT) corepressor in both cell types, with higher recruitment in CAS as compared to BAS cells. In the presence of added ligand, VDR in CAS cells exhibited decreased ligand-inducible DNA binding activity, altered recruitment of coregulators SRC-1 and CBP, and increased recruitment of SMRT corepressor, as compared to BAS. Additionally, overexpression of wild-type VDR recovered VDR-mediated transaction of CYP24 luciferase reporter. These results indicate that VDR structure/function and coregulator recruitment to 1alpha,25(OH)(2)D(3) regulated genes is altered in the CaP stroma microenvironment.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores de Calcitriol/metabolismo , Células Estromais/metabolismo , Transcrição Gênica/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Células Estromais/patologia , Células Tumorais Cultivadas
20.
J Biol Chem ; 282(13): 9445-9457, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17272279

RESUMO

Changes in local chromatin structure accompany transcriptional activation of eukaryotic genes. In vivo these changes in chromatin organization can be catalyzed by ATP-dependent chromatin-remodeling complexes, such as SWI/SNF. These complexes alter the tight wrapping of DNA in the nucleosomes and can facilitate the mobilization of the histone octamer to adjacent DNA segments, leaving promoter regulatory elements exposed for transcription factor binding. To gain understanding of how the activity of SWI/SNF complexes may be modulated by the different DNA sequences within a natural promoter, we have reconstituted nucleosomes containing promoter segments of the transcriptionally active cell type-specific osteocalcin (OC) gene and determined how they affect the directional movements of the nucleosomes. Our results indicate that SWI/SNF complexes induce octamer sliding to preferential positions in the OC promoter, leading to a nucleosomal organization that resembles that described in intact cells expressing the OC gene. Our studies demonstrate that the position of the histone octamer is primarily determined by sequences within the OC promoter that include or exclude nucleosomes. We propose that these sequences are critical components of the regulatory mechanisms that mediate expression of this tissue-specific gene.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/química , Nucleossomos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição/química , Animais , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/fisiologia , Regulação da Expressão Gênica/genética , Nucleossomos/genética , Osteocalcina/biossíntese , Ratos , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA