Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38259172

RESUMO

P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Translocação Genética , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP , Mutação
2.
Sci Adv ; 8(41): eabn6845, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223470

RESUMO

Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Escherichia coli , Escherichia coli , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Detergentes/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lipídeo A , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Conformação Proteica
3.
Sci Adv ; 5(12): eaax9484, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31844670

RESUMO

Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.


Assuntos
Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias/ultraestrutura , Yarrowia/ultraestrutura , Trifosfato de Adenosina/química , Complexo I de Transporte de Elétrons/genética , Humanos , Mitocôndrias/genética , Membranas Mitocondriais , Conformação Proteica , Yarrowia/genética
4.
Biochim Biophys Acta ; 1857(12): 1935-1942, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693469

RESUMO

Mitochondrial complex I is a 1MDa membrane protein complex with a central role in aerobic energy metabolism. The bioenergetic core functions are executed by 14 central subunits that are conserved from bacteria to man. Despite recent progress in structure determination, our understanding of the function of the ~30 accessory subunits associated with the mitochondrial complex is still limited. We have investigated the structure of complex I from the aerobic yeast Yarrowia lipolytica by cryo-electron microscopy. Our density map at 7.9Å resolution closely matches the 3.6-3.9Å X-ray structure of the Yarrowia lipolytica complex. However, the cryo-EM map indicated an additional subunit on the side of the matrix arm above the membrane surface, pointing away from the membrane arm. The density, which is not present in any previously described complex I structure and occurs in about 20 % of the particles, was identified as the accessory sulfur transferase subunit ST1. The Yarrowia lipolytica complex I preparation is active in generating H2S from the cysteine derivative 3-mercaptopyruvate, catalyzed by ST1. We thus provide evidence for a link between respiratory complex I and mitochondrial sulfur metabolism.


Assuntos
Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Proteínas Fúngicas/metabolismo , Mitocôndrias/enzimologia , Transferases de Grupos de Enxofre/metabolismo , Enxofre/metabolismo , Yarrowia/enzimologia , Catálise , Cisteína/análogos & derivados , Cisteína/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Transferases de Grupos de Enxofre/química , Transferases de Grupos de Enxofre/genética , Transferases de Grupos de Enxofre/ultraestrutura , Yarrowia/genética , Yarrowia/ultraestrutura
5.
Mol Cell ; 63(3): 445-56, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27373333

RESUMO

We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology.


Assuntos
Proteínas Fúngicas/química , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , Yarrowia/enzimologia , Trifosfato de Adenosina/metabolismo , Catálise , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Subunidades Proteicas , Relação Estrutura-Atividade , Yarrowia/ultraestrutura
6.
PLoS One ; 8(9): e74707, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24073218

RESUMO

ATP sulfurylase (ATPS) catalyzes a key reaction in the global sulfur cycle by reversibly converting inorganic sulfate (SO4 (2-)) with ATP to adenosine 5'-phosphosulfate (APS) and pyrophosphate (PPi). In this work we report on the sat encoded dissimilatory ATP sulfurylase from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum. In this organism, the sat gene is located in one operon and co-transcribed with the aprMBA genes for membrane-bound APS reductase. Like APS reductase, Sat is dispensible for growth on reduced sulfur compounds due to the presence of an alternate, so far unidentified sulfite-oxidizing pathway in A. vinosum. Sulfate assimilation also proceeds independently of Sat by a separate pathway involving a cysDN-encoded assimilatory ATP sulfurylase. We produced the purple bacterial sat-encoded ATP sulfurylase as a recombinant protein in E. coli, determined crucial kinetic parameters and obtained a crystal structure in an open state with a ligand-free active site. By comparison with several known structures of the ATPS-APS complex in the closed state a scenario about substrate-induced conformational changes was worked out. Despite different kinetic properties ATPS involved in sulfur-oxidizing and sulfate-reducing processes are not distinguishable on a structural level presumably due to the interference between functional and evolutionary processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Chromatiaceae/enzimologia , Escherichia coli/enzimologia , Sulfato Adenililtransferase/química , Sulfato Adenililtransferase/genética , Sulfatos/metabolismo , Adenosina Fosfossulfato/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sulfato Adenililtransferase/metabolismo
7.
J Biol Inorg Chem ; 18(8): 905-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037219

RESUMO

Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31-39CCX35-36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) (57)Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four (57)Fe hyperfine couplings to the cluster in all three proteins. (13)C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. (57)Fe resonances in all three systems revealed unusually large (57)Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster's unique magnetic properties arise from the CCG binding motif.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Methanobacteriaceae/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases/metabolismo , Ácido Succínico/metabolismo , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/química , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Dados de Sequência Molecular , NAD(P)H Desidrogenase (Quinona)/química , Oxirredutases/química , Ligação Proteica , Estrutura Terciária de Proteína , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo
8.
Metallomics ; 5(4): 302-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23324858

RESUMO

Sulfate-reducing bacteria and archaea are important players in the biogeochemical sulfur cycle. ATP sulfurylase, adenosine 5'-phosphosulfate reductase and dissimilatory sulfite reductase are the key enzymes in the energy conserving process of SO4(2-) → H2S reduction. This review summarizes recent advances in our understanding of the activation of sulfate to adenosine 5'-phosphosulfate, the following reductive cleavage to SO3(2-) and AMP, and the final six-electron reduction of SO3(2-) to H2S in the hyperthermophilic archaeon Archaeoglobus fulgidus. Structure based mechanisms will be discussed for these three enzymes which host unique metal centers at their catalytic sites.


Assuntos
Archaeoglobus fulgidus/enzimologia , Enzimas/química , Enzimas/metabolismo , Metais/metabolismo , Sulfatos/metabolismo , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA