Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986926

RESUMO

Background & Purpose: Ischemia affecting two thirds of the MCA territory predicts development of malignant cerebral edema. However, early infarcts are hard to diagnose on conventional head CT. We hypothesize that high-energy (190keV) virtual monochromatic images (VMI) from dual-energy CT (DECT) imaging enables earlier detection of secondary injury from malignant cerebral edema (MCE). Methods: Consecutive LHI patients with NIHSS ≥ 15 and DECT within 10 hours of reperfusion from May 2020 to March 2022 were included. We excluded patients with parenchymal hematoma-type 2 transformation. Retrospective analysis of clinical and novel variables included VMI Alberta Stroke Program Early CT Score (ASPECTS), total iodine content, and VMI infarct volume. Primary outcome was early neurological decline (END). Secondary outcomes included hemorrhagic transformation, decompressive craniectomy (DC), and medical treatment of MCE. Fisher's exact test and Wilcoxon test were used for univariate analysis. Logistic regression was used to develop prediction models for categorical outcomes. Results: Eighty-four LHI patients with a median age of 67.5 [IQR 57,78] years and NIHSS 22 [IQR 18,25] were included. Twenty-nine patients had END. VMI ASPECTS, total iodine content, and VMI infarct volume were associated with END. VMI ASPECTS, VMI infarct volume, and total iodine content were predictors of END after adjusting for age, sex, initial NIHSS, and tPA administration, with a AUROC of 0.691 [0.572,0.810], 0.877 [0.800, 0.954], and 0.845 [0.750, 0.940]. By including all three predictors, the model achieved AUROC of 0.903 [0.84,0.97] and was cross validated by leave one out method with AUROC of 0.827. Conclusion: DECT with high-energy VMI and iodine quantification is superior to conventional CT ASPECTS and is a novel predictor for early neurological decline due to malignant cerebral edema after large hemispheric infarction.

2.
Brain ; 142(11): 3550-3564, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31608359

RESUMO

Traumatic microbleeds are small foci of hypointensity seen on T2*-weighted MRI in patients following head trauma that have previously been considered a marker of axonal injury. The linear appearance and location of some traumatic microbleeds suggests a vascular origin. The aims of this study were to: (i) identify and characterize traumatic microbleeds in patients with acute traumatic brain injury; (ii) determine whether appearance of traumatic microbleeds predict clinical outcome; and (iii) describe the pathology underlying traumatic microbleeds in an index patient. Patients presenting to the emergency department following acute head trauma who received a head CT were enrolled within 48 h of injury and received a research MRI. Disability was defined using Glasgow Outcome Scale-Extended ≤6 at follow-up. All magnetic resonance images were interpreted prospectively and were used for subsequent analysis of traumatic microbleeds. Lesions on T2* MRI were stratified based on 'linear' streak-like or 'punctate' petechial-appearing traumatic microbleeds. The brain of an enrolled subject imaged acutely was procured following death for evaluation of traumatic microbleeds using MRI targeted pathology methods. Of the 439 patients enrolled over 78 months, 31% (134/439) had evidence of punctate and/or linear traumatic microbleeds on MRI. Severity of injury, mechanism of injury, and CT findings were associated with traumatic microbleeds on MRI. The presence of traumatic microbleeds was an independent predictor of disability (P < 0.05; odds ratio = 2.5). No differences were found between patients with punctate versus linear appearing microbleeds. Post-mortem imaging and histology revealed traumatic microbleed co-localization with iron-laden macrophages, predominately seen in perivascular space. Evidence of axonal injury was not observed in co-localized histopathological sections. Traumatic microbleeds were prevalent in the population studied and predictive of worse outcome. The source of traumatic microbleed signal on MRI appeared to be iron-laden macrophages in the perivascular space tracking a network of injured vessels. While axonal injury in association with traumatic microbleeds cannot be excluded, recognizing traumatic microbleeds as a form of traumatic vascular injury may aid in identifying patients who could benefit from new therapies targeting the injured vasculature and secondary injury to parenchyma.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Avaliação da Deficiência , Hemorragias Intracranianas/diagnóstico por imagem , Lesões do Sistema Vascular/diagnóstico por imagem , Lesões do Sistema Vascular/patologia , Adolescente , Adulto , Autopsia , Axônios/patologia , Lesões Encefálicas Traumáticas/patologia , Feminino , Escala de Resultado de Glasgow , Humanos , Hemorragias Intracranianas/patologia , Ferro/sangue , Macrófagos/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA