Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 233(4): 1780-1796, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913488

RESUMO

Peptide-receptor signaling is an important system for intercellular communication, regulating many developmental processes. A single process can be controlled by several distinct signaling peptides. However, since peptide-receptor modules are usually studied separately, their mechanistic interactions remain largely unexplored. Two phylogenetically unrelated peptide-receptor modules, GLV6/GLV10-RGI and TOLS2/PIP2-RLK7, independently described as inhibitors of lateral root initiation, show striking similarities between their expression patterns and gain- and loss-of-function phenotypes, suggesting a common function during lateral root spacing and initiation. The GLV6/GLV10-RGI and TOLS2/PIP2-RLK7 modules trigger similar transcriptional changes, likely in part via WRKY transcription factors. Their overlapping set of response genes includes PUCHI and PLT5, both required for the effect of GLV6/10, as well as TOLS2, on lateral root initiation. Furthermore, both modules require the activity of MPK6 and can independently trigger MPK3/MPK6 phosphorylation. The GLV6/10 and TOLS2/PIP2 signaling pathways seem to converge in the activation of MPK3/MPK6, leading to the induction of a similar transcriptional response in the same target cells, thereby regulating lateral root initiation through a (partially) common mechanism. Convergence of signaling pathways downstream of phylogenetically unrelated peptide-receptor modules adds an additional, and hitherto unrecognized, level of complexity to intercellular communication networks in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos/metabolismo , Transdução de Sinais
2.
Nat Plants ; 6(5): 533-543, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32393883

RESUMO

During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Divisão Celular , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Peptídeos/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Western Blotting , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais
3.
Science ; 351(6271): 384-7, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26798015

RESUMO

The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.


Assuntos
Apoptose , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Coifa/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Coifa/citologia , Coifa/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Solo , Água/metabolismo
4.
J Exp Bot ; 66(17): 5257-69, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26195730

RESUMO

Plant genomes encode numerous small secretory peptides (SSPs) whose functions have yet to be explored. Based on structural features that characterize SSP families known to take part in postembryonic development, this comparative genome analysis resulted in the identification of genes coding for oligopeptides potentially involved in cell-to-cell communication. Because genome annotation based on short sequence homology is difficult, the criteria for the de novo identification and aggregation of conserved SSP sequences were first benchmarked across five reference plant species. The resulting gene families were then extended to 32 genome sequences, including major crops. The global phylogenetic pattern common to the functionally characterized SSP families suggests that their apparition and expansion coincide with that of the land plants. The SSP families can be searched online for members, sequences and consensus (http://bioinformatics.psb.ugent.be/webtools/PlantSSP/). Looking for putative regulators of root development, Arabidopsis thaliana SSP genes were further selected through transcriptome meta-analysis based on their expression at specific stages and in specific cell types in the course of the lateral root formation. As an additional indication that formerly uncharacterized SSPs may control development, this study showed that root growth and branching were altered by the application of synthetic peptides matching conserved SSP motifs, sometimes in very specific ways. The strategy used in the study, combining comparative genomics, transcriptome meta-analysis and peptide functional assays in planta, pinpoints factors potentially involved in non-cell-autonomous regulatory mechanisms. A similar approach can be implemented in different species for the study of a wide range of developmental programmes.


Assuntos
Genoma de Planta , Genômica/métodos , Peptídeos/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Sequência Conservada , Perfilação da Expressão Gênica , Repetições de Microssatélites , Peptídeos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
5.
Plant Cell ; 23(10): 3671-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22003076

RESUMO

Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Ciclo Celular/fisiologia , Fatores de Transcrição E2F/genética , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Inativação de Genes , Mutagênese Insercional , Raízes de Plantas/citologia , Raízes de Plantas/genética , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Transdução de Sinais/fisiologia , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA