Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Anticancer Res ; 43(9): 3897-3904, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648291

RESUMO

BACKGROUND/AIM: To obtain sufficient numbers of high-quality natural killer (NK) cells, we developed feeder cells using synthetic biology techniques. MATERIALS AND METHODS: K562 cells were engineered to express membrane bound interleukin-2 (mbIL2) or interleukin-13 (mbIL13). RESULTS: The incubation of human primary NK cells isolated from peripheral blood mononuclear cells (PBMCs) with these feeder cells significantly increased the number of activated NK cells compared to K562 parental cells. Fluorescence-activated cell sorting (FACS) analysis demonstrated that NKG2D activating receptors were abundant on the surface of NK cells expanded by K562-mbIL2 or mbIL13 cells. NK cells expanded on K562-mbIL2 or mbIL13 lysed cancer cells more effectively than those cultured with normal K562 cells. Using NK cells incubated with our feeder cells, we developed anti-CD19 chimeric antigen receptor (CAR)-NK cells. They showed robust cytotoxic effect against CD19 positive cancer cell line. CONCLUSION: Our newly developed feeder cells could provide useful tools for NK cell therapy.


Assuntos
Células Matadoras Naturais , Leucócitos Mononucleares , Humanos , Células Alimentadoras , Proliferação de Células , Células K562
2.
Sci Rep ; 13(1): 12365, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524755

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising modality for anti-cancer treatment. Its efficacy is quite remarkable in hematological tumors. Owing to their excellent clinical results, gene- modified cell therapies, including T cells, natural killer (NK) cells, and macrophages, are being actively studied in both academia and industry. However, the protocol to make CAR immune cells is too complicated, so it is still unclear how to efficiently produce the potent CAR immune cells. To manufacture effective CAR immune cells, we need to be aware of not only how to obtain highly infective viral particles, but also how to transduce CAR genes into immune cells. In this paper, we provide detailed information on spinoculation, which is one of the best known protocols to transduce genes into immune cells, in a methodological view. Our data indicate that gene transduction is significantly dependent on speed and duration of centrifugation, concentration and number of viral particles, the concentration of polybrene, and number of infected immune cells. In addition, we investigated on the optimal polyethylene glycol (PEG) solution to concentrate the viral supernatant and the optimized DNA ratios transfected into 293T cells to produce high titer of viral particles. This study provides useful information for practical production of the gene-modified immune cells using viral vectors.


Assuntos
Vetores Genéticos , Neoplasias , Humanos , Transdução Genética , Vetores Genéticos/genética , Células Matadoras Naturais , Linfócitos T , Imunoterapia Adotiva/métodos
3.
Anticancer Res ; 43(8): 3419-3427, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37500142

RESUMO

BACKGROUND/AIM: Several chimeric antigen receptor (CAR) T cells have been used to treat melanoma but have not shown favorable results. This study investigated whether Herpes virus entry mediator (HVEM), which is overexpressed in melanoma, is a potential novel antigen for CAR T cell therapy. MATERIALS AND METHODS: A CAR construct, composed of the BTLA extracellular domain for HVEM recognition (BTLA-28z), was developed and tested. RESULTS: Jurkat cells transduced with BTLA-28z exhibited enhanced IL-2 secretion when incubated with HVEM-over-expressing melanoma cells. KHYG-1 cells transduced with BTLA-28z also lysed melanoma cell lines. Using primary T cells, we generated CAR T cells targeting HVEM. BTLA-28z CAR T cells exhibited excellent lytic activities against melanoma cell lines. CONCLUSION: HVEM-targeting CAR T cells may be useful for the treatment of melanoma.


Assuntos
Imunoterapia Adotiva , Melanoma , Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Humanos , Linhagem Celular , Melanoma/terapia , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
4.
Sci Rep ; 13(1): 10805, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402749

RESUMO

BRD4 contains two tandem bromodomains (BD1 and BD2) that recognize acetylated lysine for epigenetic reading, and these bromodomains are promising therapeutic targets for treating various diseases, including cancers. BRD4 is a well-studied target, and many chemical scaffolds for inhibitors have been developed. Research on the development of BRD4 inhibitors against various diseases is actively being conducted. Herein, we propose a series of [1,2,4]triazolo[4,3-b]pyridazine derivatives as bromodomain inhibitors with micromolar IC50 values. We characterized the binding modes by determining the crystal structures of BD1 in complex with four selected inhibitors. Compounds containing [1,2,4] triazolo[4,3-b]pyridazine derivatives offer promising starting molecules for designing potent BRD4 BD inhibitors.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
5.
Blood Adv ; 7(1): 92-105, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269842

RESUMO

Bruton tyrosine kinase (BTK) is an important signaling hub that activates the B-cell receptor (BCR) signaling cascade. BCR activation can contribute to the growth and survival of B-cell lymphoma or leukemia. The inhibition of the BCR signaling pathway is critical for blocking downstream events and treating B-cell lymphomas. Herein, we report potent and orally available proteolysis-targeting chimeras (PROTACs) that target BTK to inactivate BCR signaling. Of the PROTACs tested, UBX-382 showed superior degradation activity for wild-type (WT) and mutant BTK proteins in a single-digit nanomolar range of half-maximal degradation concentration in diffuse large B-cell lymphoma cell line. UBX-382 was effective on 7 out of 8 known BTK mutants in in vitro experiments and was highly effective in inhibiting tumor growth in murine xenograft models harboring WT or C481S mutant BTK-expressing TMD-8 cells over ibrutinib, ARQ-531, and MT-802. Remarkably, oral dosing of UBX-382 for <2 weeks led to complete tumor regression in 3 and 10 mg/kg groups in murine xenograft models. UBX-382 also provoked the cell type-dependent and selective degradation of cereblon neosubstrates in various hematological cancer cells. These results suggest that UBX-382 treatment is a promising therapeutic strategy for B-cell-related blood cancers with improved efficacy and diverse applicability.


Assuntos
Linfoma Difuso de Grandes Células B , Pirimidinas , Humanos , Animais , Camundongos , Tirosina Quinase da Agamaglobulinemia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais , Modelos Animais de Doenças , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética
6.
Bioorg Chem ; 127: 105923, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35717803

RESUMO

Molecular glue degraders, such as lenalidomide and pomalidomide, bind to cereblon (CRBN) E3 ligase and subsequently recruit neosubstrate proteins, Ikaros (IKZF1) and Aiolos (IKZF3), for the ubiquitination-proteasomal degradation process. In this study, we explored structure-activity relationship analysis for novel GSPT1 degraders utilizing a benzotriazinone scaffold previously discovered as a novel CRBN binder. In particular, we focused on the position of the ureido group on the benzotriazinone scaffold, substituent effect on the phenylureido group, and methyl substitution on the benzylic position of benzotriazinone. As a result, we identified 34f (TD-522), which exhibits strong anti-proliferative effects in both KG-1 (EC50 = 0.5 nM) and TMD-8 (EC50 = 5.2 nM) cell lines. Compound 34f effectively induced GSPT1 degradation with a DC50 of 0.269 nM and Dmax of >95 % at 10 nM concentration in KG-1 cells. An in vivo xenograft study showed that compound 34f effectively suppressed TMD8-driven tumor growth, suggesting a potential role in the development of novel GSPT1 degraders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Lenalidomida/química , Lenalidomida/farmacologia , Camundongos , Proteólise , Relação Estrutura-Atividade
7.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830894

RESUMO

Chimeric antigen receptor (CAR) technology has been highlighted in recent years as a new therapeutic approach for cancer treatment. Although the impressive efficacy of CAR-based T cell adoptive immunotherapy has been observed in hematologic cancers, limited effect has been reported on solid tumors. Approximately 20% of gastric cancer (GC) patients exhibit a high expression of c-Met. We have generated an anti c-Met CAR construct that is composed of a single-chain variable fragment (scFv) of c-Met antibody and signaling domains consisting of CD28 and CD3ζ. To test the CAR construct, we used two cell lines: the Jurkat and KHYG-1 cell lines. These are convenient cell lines, compared to primary T cells, to culture and to test CAR constructs. We transduced CAR constructs into Jurkat cells by electroporation. c-Met CAR Jurkat cells secreted interleukin-2 (IL-2) only when incubated with c-Met positive GC cells. To confirm the lytic function of CAR, the CAR construct was transduced into KHYG-1, a NK/T cell line, using lentiviral particles. c-Met CAR KHYG-1 showed cytotoxic effect on c-Met positive GC cells, while c-Met negative GC cell lines were not eradicated by c-Met CAR KHYG-1. Based on these data, we created c-Met CAR T cells from primary T cells, which showed high IL-2 and IFN-γ secretion when incubated with the c-Met positive cancer cell line. In an in vivo xenograft assay with NSG bearing MKN-45, a c-Met positive GC cell line, c-Met CAR T cells effectively inhibited the tumor growth of MKN-45. Our results show that the c-Met CAR T cell therapy can be effective on GC.

8.
Sci Adv ; 7(40): eabi9062, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586854

RESUMO

In membrane-based separation, molecular size differences relative to membrane pore sizes govern mass flux and separation efficiency. In applications requiring complex molecular differentiation, such as in natural gas processing, cascaded pore size distributions in membranes allow different permeate molecules to be separated without a reduction in throughput. Here, we report the decoration of microporous polymer membrane surfaces with molecular fluorine. Molecular fluorine penetrates through the microporous interface and reacts with rigid polymeric backbones, resulting in membrane micropores with multimodal pore size distributions. The fluorine acts as angstrom-scale apertures that can be controlled for molecular transport. We achieved a highly effective gas separation performance in several industrially relevant hollow-fibrous modular platform with stable responses over 1 year.

9.
Cancers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209505

RESUMO

Immunotherapies are emerging as powerful weapons for the treatment of malignancies. Chimeric antigen receptor (CAR)-engineered T cells have shown dramatic clinical results in patients with hematological malignancies. However, it is still challenging for CAR T cell therapy to be successful in several types of blood cancer and most solid tumors. Many attempts have been made to enhance the efficacy of CAR T cell therapy by modifying the CAR construct using combination agents, such as compounds, antibodies, or radiation. At present, technology to improve CAR T cell therapy is rapidly developing. In this review, we particularly emphasize the most recent studies utilizing genetic engineering and synergistic agents to improve CAR T cell therapy.

10.
Molecules ; 26(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802888

RESUMO

Epigenetic regulation is known to play a key role in progression of anti-cancer therapeutics. Lysine acetylation is an important mechanism in controlling gene expression. There has been increasing interest in bromodomain owing to its ability to modulate transcription of various genes as an epigenetic 'reader.' Herein, we report the design, synthesis, and X-ray studies of novel aristoyagonine (benzo[6,7]oxepino[4,3,2-cd]isoindol-2(1H)-one) derivatives and investigate their inhibitory effect against Brd4 bromodomain. Five compounds 8ab, 8bc, 8bd, 8be, and 8bf have been discovered with high binding affinity over the Brd4 protein. Co-crystal structures of these five inhibitors with human Brd4 bromodomain demonstrated that it has a key binding mode occupying the hydrophobic pocket, which is known to be the acetylated lysine binding site. These novel Brd4 bromodomain inhibitors demonstrated impressive inhibitory activity and mode of action for the treatment of cancer diseases.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Inibidores Enzimáticos/química , Isoquinolinas/química , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Acetilação , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Isoquinolinas/síntese química , Lisina/química , Lisina/metabolismo , Ligação Proteica , Domínios Proteicos/genética , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Oncol Lett ; 21(6): 473, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33907583

RESUMO

Since bromodomain containing 4 (brd4) has been considered as a prominent cancer target, numerous attempts have been made to develop potent brd4 bromodomain inhibitors. The present study provided a novel chemical scaffold which inhibited brd4 activity. Mid-throughput screening against brd4 bromodomain was performed using alpha-screen and homogeneous time-resolved fluorescence assays. Furthermore, cell cytotoxicity and xenograft assays were performed to examine if the compound was effective both in vitro and in vivo. As a result, it was revealed that compounds having naphthalene-1,4-dione scaffold inhibited the binding of bromodomain to acetylated histone. The compounds with naphthalene-1,4-dione had cytotoxic effects against the Ty82 cell line, a NUT midline carcinoma cell line, whose proliferation is dependent on brd4 activity. A10, one of the compounds with naphthalene-1,4-dione scaffold, also exhibited tumor growth inhibition effects in the xenograft assay. In addition, the compounds exhibited cytotoxic effects against gastric cancer cell lines which were resistant to I-BET-762, a BET bromodomain inhibitor. In conclusion, the novel scaffold to suppress brd4 activity was effective against cancer cells both in vitro and in vivo.

12.
Anticancer Res ; 41(4): 1811-1819, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33813386

RESUMO

BACKGROUND/AIM: Glioblastoma is the most common cancer among primary brain tumors, however, its prognosis and treatment advances are very poor. Here, we investigated whether c-Met, FOLR1, and AXL proteins are promising targets for chimeric antigen receptor (CAR) T-cell therapy, for they are known to be over-expressed in a variety of solid tumors. MATERIALS AND METHODS: CAR constructs were prepared and CAR KHYG-1 cells targeting c-Met, FOLR1, or AXL were made by lentiviral transduction. The activity of CAR KHYG-1 cells against cancer cells was measured by cytokine secretion and cell lysis assays. RESULTS: c-Met and AXL were over-expressed in most glioblastoma cell lines (11/13), but not in neuroblastoma cell lines (0/8). FOLR1 was over-expressed only in one among 16 glioblastoma cell lines. Our antigen-specific CAR KHYG-1 cells eradicated target positive glioblastoma cells selectively. CONCLUSION: Anti-c-Met and anti-AXL CAR NK or T cells could be effective in glioblastoma cells.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Receptor 1 de Folato/imunologia , Receptor 1 de Folato/metabolismo , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Células Jurkat , Células Matadoras Naturais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Receptor Tirosina Quinase Axl
13.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271901

RESUMO

CD19 is the most promising target for developing chimeric-antigen receptor (CAR) T cells against B-cell leukemic cancer. Currently, two CAR-T-cell products, Kymriah and Yescarta, are approved for leukemia patients, and various anti-CD19 CAR T cells are undergoing clinical trial. Most of these anti-CD19 CAR T cells use FMC63 single-chain variable fragments (scFvs) for binding CD19 expressed on the cancer cell surface. In this study, we screened several known CD19 scFvs for developing anti-CD19 CAR T cells. We used the KHYG-1 NK/T-cell line for screening of CD19 scFvs because it has advantages in terms of cell culture and gene transduction compared to primary T cells. Using our CAR construct backbone, we made anti-CD19 CAR constructs which each had CD19 scFvs including FMC63, B43, 25C1, BLY3, 4G7, HD37, HB12a, and HB12b, then made each anti-CD19 CAR KHYG-1 cells. Interestingly, only FMC63 CAR KHYG-1 and 4G7 CAR KHYG-1 efficiently lysed CD19-positive cell lines. In addition, in Jurkat cell line, only these two CAR Jurkat cell lines secreted IL-2 when co-cultured with CD19-positive cell line, NALM-6. Based on these results, we made FMC63 CAR T cells and 4G7 CAR T cells from PBMC. In in vitro lysis assay, 4G7 CAR T cells lysed CD19-positive cell line as well as FMC63 CAR T cells. In in vivo assay with NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, 4G7 CAR T cells eradicated NALM-6 as potently as FMC63 CAR T cells. Therefore, we anticipate that 4G7 CAR T cells will show as good a result as FMC63 CAR T cells for B-cell leukemia patients.


Assuntos
Antígenos CD19/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Ordem dos Genes , Humanos , Imunoterapia Adotiva , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Anticancer Res ; 40(9): 4929-4935, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878781

RESUMO

BACKGROUND: Mutations in the isocitrate dehydrogenase 1 (IDH1) gene are frequently found in various cancer types. IDH1 mutants produce 2-hydroxyglutarate (2-HG), an oncometabolite, from alpha-ketoglutarate (α-KG). This 2-HG plays a key role in tumorigenesis via inhibition of α-KG dependent enzymes. For this reason, IDH1 mutant could be an ideal target for the treatment of cancer. MATERIALS AND METHODS: To find a new IDH1 inhibitor, 8,364 compounds were obtained from Korea Chemical Bank. Using high-throughput screening (HTS) of a chemical library, we unveiled a compound that could inhibit the IDH1 mutant. RESULTS: According to the enzyme assay, our compound (KRC-09) effectively inhibited the activity of IDH1 R132H mutant. In addition, KRC-09 decreased the concentration of intracellular 2-HG in the U-87 MG cell line harboring IDH1 R132H. CONCLUSION: In this article, we present a novel chemical scaffold that suppresses the activity of an IDH1 mutant.


Assuntos
Antineoplásicos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Antineoplásicos/química , Linhagem Celular Tumoral , Descoberta de Drogas , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Estrutura Molecular , Mutação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
15.
ACS Synth Biol ; 9(5): 987-992, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32352759

RESUMO

Despite the excellent efficacy of chimeric antigen receptor (CAR T) cell therapy, concerns about its safety have been constantly raised. The side effects of CAR T cells result from an aberrantly upregulation of CAR T cell activity. Therefore, it is crucial to control the CAR T cell activity whenever the patient is at risk. For this purpose, the iCas9 system, which induces apoptosis in CAR T cell through caspase-9 dimerization by compound, has been invented and is currently going under clinical trial. However, the iCas9 system is irreversible, as the entire CAR T cell population is removed from the patient. Thus, CAR T cells, which are very expensive, should be reinfused to the patients after they recovered from the side-effect. Here, we propose a new CAR T cell safety strategy, which targets CAR "protein", not CAR "T cell". In this system, the CAR construct is modified to bear a bromodomain (BD). The addition of a BD in the CAR protein did not interfere with the original CAR functions, such as cytokine secretion and target cell lysis. Our data showed that the use of a proteolysis-targeting chimaera (PROTAC) compound against BD successfully degraded the BD-containing CAR protein. Moreover, the CAR expression is recovered when the PROTAC compound is removed from the cell, demonstrating that our system is reversible. In a target cell lysis assay, the PROTAC compound successfully suppressed the lytic activity of CAR T cells by degrading the CAR protein. In conclusion, we developed a new safety system in which CAR T cells can be "reversibly" controlled by a compound.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Azepinas/química , Azepinas/farmacologia , Linhagem Celular , Histona Acetiltransferases/química , Humanos , Interleucina-2/metabolismo , Domínios Proteicos , Proteólise/efeitos dos fármacos , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Talidomida/análogos & derivados , Talidomida/química , Talidomida/farmacologia , Fatores de Transcrição/química , Ubiquitina-Proteína Ligases/metabolismo
16.
Eur J Med Chem ; 166: 65-74, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30684871

RESUMO

Immunomodulatory drugs (IMiDs) exert anti-myeloma activity by binding to the protein cereblon (CRBN) and subsequently degrading IKZF1/3. Recently, their ability to recruit E3 ubiquitin ligase has been used in the proteolysis targeting chimera (PROTAC) technology. Herein, we design and synthesize a novel IMiD analog TD-106 that induces the degradation of IKZF1/3 and inhibits the proliferation of multiple myeloma cells in vitro as well as in vivo. Moreover, we demonstrate that TD-428, which comprises TD-106 linked to a BET inhibitor, JQ1 efficiently induce BET protein degradation in the prostate cancer cell line 22Rv1. Consequently, cell proliferation is inhibited due to suppressed C-MYC transcription. These results, therefore, firmly suggest that the newly synthesized IMiD analog, TD-106, is a novel CRBN modulator that can be used for targeted protein degradation.


Assuntos
Fatores Imunológicos/farmacologia , Peptídeo Hidrolases/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Camundongos , Piperidonas/síntese química , Piperidonas/química , Piperidonas/farmacologia , Ubiquitina-Proteína Ligases , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biochem Biophys Res Commun ; 505(2): 542-547, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274779

RESUMO

Recently, proteolysis targeting chimera (PROTAC) technology is highlighted in drug discovery area as a new therapeutic approach. PROTAC as a heterobifunctional molecule is comprised of two ligands, which recruit target protein and E3 ligase, respectively. To degrade the anaplastic lymphoma kinase (ALK) fusion protein, such as NPM-ALK or EML4-ALK, we generated several ALK-PROTAC molecules consisted of ceritinib, one of the ALK inhibitors, and ligand of von Hippel-Lindau (VHL) E3 ligase. Among these molecules, TD-004 effectively induced ALK degradation and inhibited the growth of ALK fusion positive cell lines, SU-DHL-1 and H3122. We also confirmed that TD-004 significantly reduced the tumor growth in H3122 xenograft model.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Ligantes , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas de Fusão Oncogênica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteólise , Pirimidinas/química , Sulfonas/química , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
18.
Biochem Biophys Res Commun ; 503(2): 882-887, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29928885

RESUMO

Bromodomain-containing protein 4 (Brd4) is known to play a key role in tumorigenesis. It binds acetylated histones to regulate the expression of numerous genes. Because of the importance of brd4 in tumorigenesis, much research has been undertaken to develop brd4 inhibitors with therapeutic potential. As a result, various scaffolds for bromodomain inhibitors have been identified. To discover new scaffolds, we performed mid-throughput screening using two different enzyme assays, alpha-screen and ELISA. We found a novel bromodomain inhibitor with a unique scaffold, aristoyagonine. This natural compound showed inhibitory activity in vitro and tumor growth inhibition in a Ty82-xenograft mouse model. In addition, we tested Brd4 inhibitors in gastric cancer cell lines, and found that aristoyagonine exerted cytotoxicity not only in I-BET-762-sensitive cancer cells, but also in I-BET-762-resistant cancer cells. This is the first paper to describe a natural compound as a Brd4 bromodomain inhibitor.


Assuntos
Produtos Biológicos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Isoquinolinas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Neoplasias/prevenção & controle , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
PLoS One ; 13(6): e0198347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874279

RESUMO

Gastric cancer is a malignancy that has a high mortality rate. Although progress has been made in the treatment of gastric cancer, many patients experience cancer recurrence and metastasis. Folate receptor 1 (FOLR1) is overexpressed on the cell surface in over one-third of gastric cancer patients, but rarely is expressed in normal tissue. This makes FOLR1 a potential target for chimeric antigen receptor (CAR) T cell immunotherapy, although the function of FOLR1 has not been elucidated. CAR are engineered fusion receptor composed of an antigen recognition region and signaling domains. T cells expressing CAR have specific activation and cytotoxic effects against cancer cells containing the target antigen. In this study, we generated a CAR that targets FOLR1 composed of a single-chain variable fragment (scFv) of FOLR1 antibody and signaling domains consisting of CD28 and CD3ζ. Both FOLR1-CAR KHYG-1, a natural killer cell line, and FOLR1-CAR T cells recognized FOLR1-positive gastric cancer cells in a MHC-independent manner and induced secretion of various cytokines and caused cell death. Conclusively, this is the first study to demonstrate that CAR KHYG-1/T cells targeting FOLR1 are effective against FOLR1-positive gastric cancer cells.


Assuntos
Receptor 1 de Folato/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Neoplasias Gástricas/terapia , Linfócitos T/transplante , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Células Jurkat , Células K562 , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/imunologia , Neoplasias Gástricas/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Nanosci Nanotechnol ; 18(9): 6447-6454, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677812

RESUMO

In this study, various poly(ether ether ketone) were synthesized using three different monomers and the imidazolium group was introduced into synthesized poly(ether ether ketone)s by using substitution reaction. Synthesized polymers were used to prepare anion exchange membranes and to evaluate its properties. Thermal, chemical and structural properties were carried out using thermogravimetric analysis, nuclear magnetic resonance. The anion exchange membranes with different imidazolium moieties were characterized by several different analytical techniques such as water up take, ion exchange capacity, hydroxide conductivity for checking the possibility to apply the anion exchange membrane fuel cell. Consequently, results of characterization were studied to understand the correlation between stabilities of the membrane and functional group and polymer backbone structures. And we confirm membrane performance was improved by increasing imidazolium cation groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA