Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35635747

RESUMO

DNA Methyltransferase 3 A (DNMT3A) is an important facilitator of differentiation of both embryonic and hematopoietic stem cells. Heterozygous germline mutations in DNMT3A lead to Tatton-Brown-Rahman Syndrome (TBRS), characterized by obesity and excessive height. While DNMT3A is known to impact feeding behavior via the hypothalamus, here we investigated a role in adipocyte progenitors utilizing heterozygous knockout mice that recapitulate cardinal TBRS phenotypes. These mice become morbidly obese due to adipocyte enlargement and tissue expansion. Adipose tissue in these mice exhibited defects in preadipocyte maturation and precocious activation of inflammatory gene networks, including interleukin-6 signaling. Adipocyte progenitor cell lines lacking DNMT3A exhibited aberrant differentiation. Furthermore, mice in which Dnmt3a was specifically ablated in adipocyte progenitors showed enlarged fat depots and increased progenitor numbers, partly recapitulating the TBRS obesity phenotypes. Loss of DNMT3A led to constitutive DNA hypomethylation, such that the DNA methylation landscape of young adipocyte progenitors resemble that of older wild-type mice. Together, our results demonstrate that DNMT3A coordinates both the central and local control of energy storage required to maintain normal weight and prevent inflammatory obesity.


Assuntos
Deficiência Intelectual , Erros Inatos do Metabolismo , Obesidade Mórbida , Adipogenia , Animais , DNA , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Deficiência Intelectual/genética , Camundongos
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161280

RESUMO

Osteogenesis imperfecta (OI) is a genetic disorder that features wide-ranging defects in both skeletal and nonskeletal tissues. Previously, we and others reported that loss-of-function mutations in FK506 Binding Protein 10 (FKBP10) lead to skeletal deformities in conjunction with joint contractures. However, the pathogenic mechanisms underlying joint dysfunction in OI are poorly understood. In this study, we have generated a mouse model in which Fkbp10 is conditionally deleted in tendons and ligaments. Fkbp10 removal substantially reduced telopeptide lysyl hydroxylation of type I procollagen and collagen cross-linking in tendons. These biochemical alterations resulting from Fkbp10 ablation were associated with a site-specific induction of fibrosis, inflammation, and ectopic chondrogenesis followed by joint deformities in postnatal mice. We found that the ectopic chondrogenesis coincided with enhanced Gli1 expression, indicating dysregulated Hedgehog (Hh) signaling. Importantly, genetic inhibition of the Hh pathway attenuated ectopic chondrogenesis and joint deformities in Fkbp10 mutants. Furthermore, Hh inhibition restored alterations in gait parameters caused by Fkbp10 loss. Taken together, we identified a previously unappreciated role of Fkbp10 in tendons and ligaments and pathogenic mechanisms driving OI joint dysfunction.


Assuntos
Condrócitos/patologia , Articulações/fisiopatologia , Atividade Motora , Osteogênese Imperfeita/fisiopatologia , Osteogênese , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Animais Recém-Nascidos , Condrogênese/genética , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibrose , Marcha , Deleção de Genes , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Hidroxilação , Inflamação/genética , Inflamação/patologia , Articulações/patologia , Ligamentos/patologia , Lisina/metabolismo , Camundongos , Modelos Biológicos , Ossificação Heterotópica/complicações , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Ossificação Heterotópica/fisiopatologia , Osteogênese/genética , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Peptídeos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Tendões/patologia
3.
JMIR Med Inform ; 9(3): e23983, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33783361

RESUMO

BACKGROUND: Although electronic health records (EHRs) have been widely used in secondary assessments, clinical documents are relatively less utilized owing to the lack of standardized clinical text frameworks across different institutions. OBJECTIVE: This study aimed to develop a framework for processing unstructured clinical documents of EHRs and integration with standardized structured data. METHODS: We developed a framework known as Staged Optimization of Curation, Regularization, and Annotation of clinical text (SOCRATex). SOCRATex has the following four aspects: (1) extracting clinical notes for the target population and preprocessing the data, (2) defining the annotation schema with a hierarchical structure, (3) performing document-level hierarchical annotation using the annotation schema, and (4) indexing annotations for a search engine system. To test the usability of the proposed framework, proof-of-concept studies were performed on EHRs. We defined three distinctive patient groups and extracted their clinical documents (ie, pathology reports, radiology reports, and admission notes). The documents were annotated and integrated into the Observational Medical Outcomes Partnership (OMOP)-common data model (CDM) database. The annotations were used for creating Cox proportional hazard models with different settings of clinical analyses to measure (1) all-cause mortality, (2) thyroid cancer recurrence, and (3) 30-day hospital readmission. RESULTS: Overall, 1055 clinical documents of 953 patients were extracted and annotated using the defined annotation schemas. The generated annotations were indexed into an unstructured textual data repository. Using the annotations of pathology reports, we identified that node metastasis and lymphovascular tumor invasion were associated with all-cause mortality among colon and rectum cancer patients (both P=.02). The other analyses involving measuring thyroid cancer recurrence using radiology reports and 30-day hospital readmission using admission notes in depressive disorder patients also showed results consistent with previous findings. CONCLUSIONS: We propose a framework for hierarchical annotation of textual data and integration into a standardized OMOP-CDM medical database. The proof-of-concept studies demonstrated that our framework can effectively process and integrate diverse clinical documents with standardized structured data for clinical research.

4.
Cell Rep ; 33(12): 108530, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33357430

RESUMO

During chronic infection, the inflammatory cytokine interferon gamma (IFNγ) damages hematopoietic stem cells (HSCs) by disrupting quiescence and promoting excessive terminal differentiation. However, the mechanism by which IFNγ hinders HSC quiescence remains undefined. Using intravital 3-dimensional microscopy, we find that IFNγ disrupts the normally close interaction between HSCs and CXCL12-abundant reticular (CAR) cells in the HSC niche. IFNγ stimulation increases expression of the cell surface protein BST2, which we find is required for IFNγ-dependent HSC relocalization and activation. IFNγ stimulation of HSCs increases their E-selectin binding by BST2 and homing to the bone marrow, which depends on E-selectin binding. Upon chronic infection, HSCs from mice lacking BST2 are more quiescent and more resistant to depletion than HSCs from wild-type mice. Overall, this study defines a critical mechanism by which IFNγ promotes niche relocalization and activation in response to inflammatory stimulation and identifies BST2 as a key regulator of HSC quiescence. VIDEO ABSTRACT.


Assuntos
Antígenos CD/imunologia , Células-Tronco Hematopoéticas/imunologia , Interferon gama/imunologia , Glicoproteínas de Membrana/imunologia , Animais , Quimiocina CXCL12/imunologia , Selectina E/imunologia , Proteínas Ligadas por GPI/imunologia , Humanos , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Artigo em Inglês | MEDLINE | ID: mdl-33114631

RESUMO

BACKGROUND: Spatial epidemiology is used to evaluate geographical variations and disparities in health outcomes; however, constructing geographic statistical models requires a labor-intensive process that limits the overall utility. We developed an open-source software for spatial epidemiological analysis and demonstrated its applicability and quality. METHODS: Based on standardized geocode and observational health data, the Application of Epidemiological Geographic Information System (AEGIS) provides two spatial analysis methods: disease mapping and detecting clustered medical conditions and outcomes. The AEGIS assesses the geographical distribution of incidences and health outcomes in Korea and the United States, specifically incidence of cancers and their mortality rates, endemic malarial areas, and heart diseases (only the United States). RESULTS: The AEGIS-generated spatial distribution of incident cancer in Korea was consistent with previous reports. The incidence of liver cancer in women with the highest Moran's I (0.44; p < 0.001) was 17.4 (10.3-26.9). The malarial endemic cluster was identified in Paju-si, Korea (p < 0.001). When the AEGIS was applied to the database of the United States, a heart disease cluster was appropriately identified (p < 0.001). CONCLUSIONS: As an open-source, cross-country, spatial analytics solution, AEGIS may globally assess the differences in geographical distribution of health outcomes through the use of standardized geocode and observational health databases.


Assuntos
Sistemas de Informação Geográfica , Modelos Estatísticos , Feminino , Humanos , Incidência , República da Coreia/epidemiologia , Análise Espacial
6.
Nat Cell Biol ; 22(10): 1162-1169, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958856

RESUMO

Stem cells need to be protected from genotoxic and proteotoxic stress to maintain a healthy pool throughout life1-3. Little is known about the proteostasis mechanism that safeguards stem cells. Here we report endoplasmic reticulum-associated degradation (ERAD) as a protein quality checkpoint that controls the haematopoietic stem cell (HSC)-niche interaction and determines the fate of HSCs. The SEL1L-HRD1 complex, the most conserved branch of ERAD4, is highly expressed in HSCs. Deletion of Sel1l led to niche displacement of HSCs and a complete loss of HSC identity, and allowed highly efficient donor-HSC engraftment without irradiation. Mechanistic studies identified MPL, the master regulator of HSC identity5, as a bona fide ERAD substrate that became aggregated in the endoplasmic reticulum following ERAD deficiency. Restoration of MPL signalling with an agonist partially rescued the number and reconstitution capacity of Sel1l-deficient HSCs. Our study defines ERAD as an essential proteostasis mechanism to safeguard a healthy stem cell pool by regulating the stem cell-niche interaction.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Receptores de Trombopoetina/metabolismo , Nicho de Células-Tronco , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Trombopoetina/genética , Ubiquitina-Proteína Ligases/genética
8.
Oncol Lett ; 18(6): 5731-5738, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31788046

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. Novel biomarkers of ccRCC may provide crucial information on tumor features and prognosis. The present study aimed to determine whether the expression of γ-aminobutyric acid (GABA) A receptor subunit θ (GABRQ) could serve as a novel prognostic marker of ccRCC. GABA is the main inhibitory neurotransmitter in the brain that activates the receptor GABAA, which is comprised of three subunit isoforms: GABRA3, GABRB3 and GABRQ. A recent study reported that GABRQ is involved in the initiation and progression of hepatocellular carcinoma; however, the role of GABRQ in ccRCC remains unknown. In the present study, clinical and transcriptomic data were obtained from cohorts of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Differential GABRQ expression levels among early (TI and II), late (TIII and IV), nonmetastatic (M0) and metastatic (M1, primary tumor) stages of ccRCC samples were then identified. Furthermore, the use of GABRQ as a prognostic gene was analyzed using Uno's C-index based on the time-dependent area under the curve (AUC), the AUC of the receiver operating characteristic curve at 5 years, the Kaplan-Meier survival curve and multivariate analysis. The survival curve analysis revealed that low GABRQ mRNA expression was significantly associated with a poor prognosis of ccRCC (P<0.001 and P=0.0012 for TCGA and ICGC data, respectively). In addition, analyses of the C-index and AUC values further supported this discriminatory power. Furthermore, the prognostic value of GABRQ mRNA expression was confirmed by multivariate Cox regression analysis. Taken together, these results suggested that GABRQ mRNA expression may be considered as a novel prognostic biomarker of ccRCC.

9.
Front Genet ; 10: 355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057605

RESUMO

Transmembrane p24 trafficking protein 3 (TMED3) is a metastatic suppressor in colon cancer and hepatocellular carcinoma. However, its function in the progression of clear cell renal cell carcinoma (ccRCC) is unknown. Here, we report that TMED3 could be a new prognostic marker for ccRCC. Patient data were extracted from cohorts in the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Differential expression of TMED3 was observed between the low stage (Stage I and II) and high stage (Stage III and IV) patients in the TCGA and ICGC cohorts and between the low grade (Grade I and II) and high grade (Grade III and IV) patients in the TCGA cohort. Further, we evaluated TMED3 expression as a prognostic gene using Kaplan-Meier survival analysis, multivariate analysis, the time-dependent area under the curve (AUC) of Uno's C-index, and the AUC of the receiver operating characteristics at 5 years. The Kaplan-Meier analysis revealed that TMED3 overexpression was associated with poor prognosis for ccRCC patients. Analysis of the C-indices and area under the receiver operating characteristic curve further supported this. Multivariate analysis confirmed the prognostic significance of TMED3 expression levels (P = 0.005 and 0.006 for TCGA and ICGC, respectively). Taken together, these findings demonstrate that TMED3 is a potential prognostic factor for ccRCC.

10.
Cell Stem Cell ; 24(6): 944-957.e5, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006621

RESUMO

Stem cell heterogeneity is recognized as functionally relevant for tissue homeostasis and repair. The identity, context dependence, and regulation of skeletal muscle satellite cell (SC) subsets remains poorly understood. We identify a minor subset of Pax7+ SCs that is indelibly marked by an inducible Mx1-Cre transgene in vivo, is enriched for Pax3 expression, and has reduced ROS (reactive oxygen species) levels. Mx1+ SCs possess potent stem cell activity upon transplantation but minimally contribute to endogenous muscle repair, due to their relative low abundance. In contrast, a dramatic clonal expansion of Mx1+ SCs allows extensive contribution to muscle repair and niche repopulation upon selective pressure of radiation stress, consistent with reserve stem cell (RSC) properties. Loss of Pax3 in RSCs increased ROS content and diminished survival and stress tolerance. These observations demonstrate that the Pax7+ SC pool contains a discrete population of radiotolerant RSCs that undergo clonal expansion under severe stress.


Assuntos
Células-Tronco Adultas/fisiologia , Dano ao DNA/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Células Clonais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Resistência a Myxovirus/metabolismo , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/metabolismo , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Regulação para Cima
11.
Cell Death Dis ; 9(11): 1092, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361642

RESUMO

Life-long regeneration of healthy muscle by cell transplantation is an ideal therapy for patients with degenerative muscle diseases. Yet, obtaining muscle stem cells from patients is very limited due to their exhaustion in disease condition. Thus, development of a method to obtain healthy myogenic stem cells is required. Here, we showed that the four transcription factors, Six1, Eya1, Esrrb, and Pax3, converts fibroblasts into induced myogenic stem cells (iMSCs). The iMSCs showed effective differentiation into multinucleated myotubes and also higher proliferation capacity than muscle derived stem cells both in vitro and in vivo. The iMSCs do not lose their proliferation capacity though the passaging number is increased. We further isolated CD106-negative and α7-integrin-positive iMSCs (sort-iMSCs) showing higher myogenic differentiation capacity than iMSCs. Moreover, genome-wide transcriptomic analysis of iMSCs and sort-iMSCs, followed by network analysis, revealed the genes and signaling pathways associated with enhanced proliferation and differentiation capacity of iMSCs and sort-iMSCs, respectively. The stably expandable iMSCs provide a new source for drug screening and muscle regenerative therapy for muscle wasting disease.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mioblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antígenos CD/metabolismo , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Distrofina/metabolismo , Feminino , Cadeias alfa de Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL/embriologia , Camundongos Endogâmicos mdx , Camundongos Nus , Desenvolvimento Muscular , Distrofias Musculares/terapia , Gravidez , RNA Mensageiro/genética , Transplante de Células-Tronco , Transplante Autólogo , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
PLoS One ; 13(1): e0190909, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342188

RESUMO

Periosteum and bone marrow (BM) both contain skeletal stem/progenitor cells (SSCs) that participate in fracture repair. However, the functional difference and selective regulatory mechanisms of SSCs in different locations are unknown due to the lack of specific markers. Here, we report a comprehensive gene expression analysis of bone marrow SSCs (BM-SSCs), periosteal SSCs (P-SSCs), and more differentiated osteoprogenitors by using reporter mice expressing Interferon-inducible Mx1 and NestinGFP, previously known SSC markers. We first defined that the BM-SSCs can be enriched by the combination of Mx1 and NestinGFP expression, while endogenous P-SSCs can be isolated by positive selection of Mx1, CD105 and CD140a (known SSC markers) combined with the negative selection of CD45, CD31, and osteocalcinGFP (a mature osteoblast marker). Comparative gene expression analysis with FACS-sorted BM-SSCs, P-SSCs, Osterix+ preosteoblasts, CD51+ stroma cells and CD45+ hematopoietic cells as controls revealed that BM-SSCs and P-SSCs have high similarity with few potential differences without statistical significance. We also found that CD51+ cells are highly heterogeneous and have little overlap with SSCs. This was further supported by the microarray cluster analysis, where the two SSC populations clustered together but are separate from the CD51+ cells. However, when comparing SSC population to controls, we found several genes that are uniquely upregulated in endogenous SSCs. Amongst these genes, we found KDR (aka Flk1 or VEGFR2) to be most interesting and discovered that it is highly and selectively expressed in P-SSCs. This finding suggests that endogenous P-SSCs are functionally very similar to BM-SSCs with undetectable significant differences in gene expression but there are distinct molecular signatures in P-SSCs, which can be useful to specify P-SSC subset in vivo.


Assuntos
Células da Medula Óssea/metabolismo , Expressão Gênica , Periósteo/metabolismo , Células-Tronco/metabolismo , Animais , Células da Medula Óssea/citologia , Separação Celular , Citometria de Fluxo , Marcadores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Periósteo/citologia , Células-Tronco/citologia
13.
Stem Cells ; 32(3): 791-801, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24549639

RESUMO

Previous studies have shown that ZBP-89 (Zfp148) plays a critical role in erythroid lineage development, with its loss at the embryonic stage causing lethal anemia and thrombocytopenia. Its role in adult hematopoiesis has not been described. We now show that conditional deletion of ZBP-89 in adult mouse hematopoietic stem/progenitor cells (HSPC) causes anemia and thrombocytopenia that are transient in the steady state, but readily uncovered following chemically induced erythro/megakaryopoietic stress. Unexpectedly, stress induced by bone marrow transplantation of ZBP89(-/-) HSPC also resulted in a myeloid-to-B lymphoid lineage switch in bone marrow recipients. The erythroid and myeloid/B lymphoid lineage anomalies in ZBP89(-/-) HSPC are reproduced in vitro in the ZBP-89-silenced multipotent hematopoietic cell line FDCP-Mix A4, and are associated with the upregulation of PU.1 and downregulation of SCL/Tal1 and GATA-1 in ZBP89-deficient cells. Chromatin immunoprecipitation and luciferase reporter assays show that ZBP-89 is a direct repressor of PU.1 and activator of SCL/Tal1 and GATA-1. These data identify an important role for ZBP-89 in regulating stress hematopoiesis in adult mouse bone marrow.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hematopoese , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Envelhecimento/patologia , Anemia/complicações , Anemia/patologia , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Contagem de Células , Linhagem Celular Tumoral , Linhagem da Célula , Eritropoese , Fator de Transcrição GATA1/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Inativação Gênica , Células-Tronco Hematopoéticas/metabolismo , Imunofenotipagem , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Trombocitopenia/complicações , Trombocitopenia/patologia , Transativadores/metabolismo , Transcrição Gênica
14.
Cell Stem Cell ; 10(3): 259-72, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385654

RESUMO

Mesenchymal stem cells (MSCs) commonly defined by in vitro functions have entered clinical application despite little definition of their function in residence. Here, we report genetic pulse-chase experiments that define osteoblastic cells as short-lived and nonreplicative, requiring replenishment from bone-marrow-derived, Mx1(+) stromal cells with "MSC" features. These cells respond to tissue stress and migrate to sites of injury, supplying new osteoblasts during fracture healing. Single cell transplantation yielded progeny that both preserve progenitor function and differentiate into osteoblasts, producing new bone. They are capable of local and systemic translocation and serial transplantation. While these cells meet current definitions of MSCs in vitro, they are osteolineage restricted in vivo in growing and adult animals. Therefore, bone-marrow-derived MSCs may be a heterogeneous population with the Mx1(+) population, representing a highly dynamic and stress responsive stem/progenitor cell population of fate-restricted potential that feeds the high cell replacement demands of the adult skeleton.


Assuntos
Células da Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Consolidação da Fratura , Células-Tronco Mesenquimais/metabolismo , Animais , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Osso e Ossos/lesões , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Transplante de Células-Tronco
15.
PLoS One ; 7(1): e30814, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22303459

RESUMO

Wnt signaling is crucial for a variety of biological processes, including body axis formation, planar polarity, stem cell maintenance and cellular differentiation. Therefore, targeted manipulation of Wnt signaling in vivo would be extremely useful. By applying chemical inducer of dimerization (CID) technology, we were able to modify the Wnt co-receptor, low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5), to generate the synthetic ligand inducible Wnt switch, iLRP5. We show that iLRP5 oligomerization results in its localization to disheveled-containing punctate structures and sequestration of scaffold protein Axin, leading to robust ß-catenin-mediated signaling. Moreover, we identify a novel LRP5 cytoplasmic domain critical for its intracellular localization and casein kinase 1-dependent ß-catenin signaling. Finally, by utilizing iLRP5 as a Wnt signaling switch, we generated the Ubiquitous Activator of ß-catenin (Ubi-Cat) transgenic mouse line. The Ubi-Cat line allows for nearly ubiquitous expression of iLRP5 under control of the H-2K(b) promoter. Activation of iLRP5 in isolated prostate basal epithelial stem cells resulted in expansion of p63(+) cells and development of hyperplasia in reconstituted murine prostate grafts. Independently, iLRP5 induction in adult prostate stroma enhanced prostate tissue regeneration. Moreover, induction of iLRP5 in male Ubi-Cat mice resulted in prostate tumor progression over several months from prostate hyperplasia to adenocarcinoma. We also investigated iLRP5 activation in Ubi-Cat-derived mammary cells, observing that prolonged activation results in mammary tumor formation. Thus, in two distinct experimental mouse models, activation of iLRP5 results in disruption of tissue homeostasis, demonstrating the utility of iLRP5 as a novel research tool for determining the outcome of Wnt activation in a precise spatially and temporally determined fashion.


Assuntos
Homeostase , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Multimerização Proteica , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteína Axina/metabolismo , Caseína Quinase I/metabolismo , Proteínas Desgrenhadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Espaço Intracelular/metabolismo , Masculino , Neoplasias Mamárias Animais/patologia , Microdomínios da Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Fosfoproteínas/metabolismo , Fosforilação , Próstata/patologia , Próstata/transplante , Ligação Proteica , Transporte Proteico , Células Estromais/metabolismo , Células Estromais/patologia , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo
16.
Front Biosci (Landmark Ed) ; 17(1): 30-9, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201730

RESUMO

Hematopoietic stem cells (HSCs) possess the ability to self-renew and to differentiate to mature progeny along multiple different hematopoietic lineages. The function of HSCs depends upon the signals from surrounding cells found within the highly specialized microenvironment termed the hematopoietic stem cell niche. Understanding and exploiting the HSC niche is a goal of basic scientists and clinicians alike. Recent studies have focused on defining the cellular components and molecular factors critical to this microenvironment. Here we review recent findings, discuss unresolved questions, and examine the clinical implications of our current knowledge of the HSC niche.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/fisiopatologia , Hematopoese , Humanos , Modelos Biológicos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Osteoblastos/fisiologia , Osteogênese , Transdução de Sinais
17.
Blood ; 109(12): 5122-8, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17327418

RESUMO

Lck-interacting adaptor protein/Rlk/Itk-binding protein (Lad/RIBP) was previously identified as an adaptor protein involved in TCR-mediated T-cell activation. To elucidate the functions of Lad further, we here performed yeast 2-hybrid screening using Lad as bait and discovered that the G protein beta subunit (G beta) is a Lad-binding partner. Since the most well-known G protein-coupled receptor in T cells is the chemokine receptor, we investigated whether Lad is involved in chemokine signaling. We found that, upon chemokine treatment, Lad associated with G beta in Jurkat T cells. Furthermore, ectopic expression of dominant-negative Lad or the reduction of endogenous Lad expression by siRNA impaired the chemokine-induced migration of T cells, indicating that Lad is required for chemokine-induced T-cell migration. Subsequent investigation of the signaling pathways revealed that, in response to chemokine, Lad associated with the tyrosine kinases Lck and Zap-70 and that Lad was essential for the activation of Zap-70. Moreover, Lad was required for the chemokine-dependent tyrosine phosphorylation of focal adhesion molecules that included Pyk2 and paxillin. Taken together, these data show that, upon chemokine stimulation, Lad acts as an adaptor protein that links the G protein beta subunit to the tyrosine kinases Lck and Zap-70, thereby mediating T-cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Quimiocinas/farmacologia , Quimiotaxia de Leucócito , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Proteína-Tirosina Quinase ZAP-70/metabolismo
18.
Nat Biotechnol ; 24(12): 1581-90, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17143278

RESUMO

Current dendritic cell (DC) vaccine preparations involving ex vivo differentiation and maturation produce short-lived, transiently active DCs that may curtail T-cell responses in vivo. We demonstrate that Akt1, downregulation of which decreases DC lifespan, is critical for proinflammatory signal-mediated DC survival and maturation. Lipopolysaccharide or CD40 signaling stabilizes Akt1, promoting both activation and Bcl-2-dependent survival of DCs. Expression of a potent allele encoding a lipid raft-targeted Akt1, M(F)-DeltaAkt, is sufficient for maturation and survival of murine bone marrow-derived DCs in vivo. M(F)-DeltaAkt-transduced DCs enhanced T-cell proliferation, activation and long-term memory responses, enabling eradication of large pre-established lymphomas and aggressive B16 melanomas. Human myeloid DCs expressing constitutively active M(F)-DeltahAkt also survived significantly longer and promoted antigen-specific T-cell responses. Thus, Akt1 is a critical regulator of DC lifespan, and its manipulation in DCs can improve the clinical efficacy of DC-based tumor vaccines.


Assuntos
Apoptose/imunologia , Vacinas Anticâncer/farmacologia , Sobrevivência Celular , Células Dendríticas/imunologia , Regulação para Baixo/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Vias Biossintéticas , Vacinas Anticâncer/biossíntese , Hidrolases de Éster Carboxílico/metabolismo , Diferenciação Celular , Células Dendríticas/metabolismo , Humanos , Imunoterapia/métodos , Linfoma/terapia , Melanoma/terapia , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Neoplasias Cutâneas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA