Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37755088

RESUMO

Fish-derived collagen hydrolysate (CH) has shown promise in improving hair and skin health. Therefore, this study sought to comprehensively assess the effects of CH extracted from Mozambique tilapia (Oreochromis mossambicus) scales on hair and skin using in vitro and in vivo models. Human dermal papilla cells (hDPCs) were used for antioxidant and gene expression analyses, while C57BL/6 mice were orally administered CH for six weeks to assess hair growth patterns. The mice were divided into four groups: negative control (NC; distilled water), positive control (PC; 1 mg/kg finasteride), CH500 (500 mg/kg BW CH), and CH1000 (1000 mg/kg BW CH). CH mitigated catalase activity reduction in hDPCs, increased IGF-1 and VEGF levels, and decreased TGF-ß1, TNF-α, and IL-1ß expression. In vivo, CH treatment improved hair growth index, length, diameter, weight, and density. Scanning electron microscopy revealed reduced hair damage. Moreover, CH up-regulated IGF-1, VEGF, Elastin, and HAS2 mRNA expression while down-regulating TNF-α and IL-1ß. CH enhanced hair shine, growth, and skin health while alleviating inflammation. These findings demonstrate the potential of CH in alleviating oxidative stress, promoting hair growth, and enhancing skin health, both in vitro and in vivo. Fish-derived CH offers a cost-effective and bioavailable option for improving hair and skin health.


Assuntos
Tilápia , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Insulin-Like I , Fator A de Crescimento do Endotélio Vascular , Fator de Necrose Tumoral alfa , Cabelo , Colágeno , Matriz Extracelular , Estresse Oxidativo , Inflamação
2.
Skin Pharmacol Physiol ; 36(1): 27-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36693328

RESUMO

INTRODUCTION: Tumor necrosis factor (TNF)-α released after follicular injury such as that caused by plucking plays a role in the activation of hair regeneration. Microneedle (MN) treatment is applied to the scalp to increase permeability and facilitate the delivery of any number of compounds. Because the MN treatment causes injury to the epidermis, albeit minor, we reasoned that this treatment would lead to a temporary TNF-α surge and thereby promote hair regeneration. METHODS: To investigate the effects of MN-treatment-induced microinjury and TNF-α on hair growth, we used C57BL/6N mice which were divided into six experimental groups: three groups of 1) negative control (NC), 2) plucking positive control (PK), and 3) MN therapy system (MTS) mice; and three groups identical to above were treated with a TNF-α blocker for 3 weeks: 4) NCB, 5) PKB, and 6) MTSB group. RESULTS: After injury, TNF-α surge occurred on day 3 in the PK group and on day 6 in the MTS group. Wnt proteins and VEGF expression were markedly increased in the PK group on day 3 and on day 6 in the MTS group compared to the NC group. Following wound healing, only MTS and PK groups displayed thickened epidermis and longer HF length. Within the 2 weeks following treatment, the rate of hair growth was much slower in the injured mice treated with the TNF-α blocker. CONCLUSION: Our findings indicate that microinjury stimulates the wound-healing mechanism via TNF-α/Wnt/VEGF surge to induce hair growth, and that blocking TNF-α inhibits this growth process.


Assuntos
Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Cicatrização , Cabelo/metabolismo , Regeneração
3.
Exp Mol Med ; 55(1): 196-204, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639716

RESUMO

Bacterial extracellular vesicles (EVs) have been shown to regulate various pulmonary diseases, but their functions in asthma remain uncertain. To demonstrate the clinical significance of Micrococcus luteus-derived EVs (MlEVs) in asthma, we enrolled 45 asthmatic patients (20 patients with neutrophilic asthma [NA], 25 patients with eosinophilic asthma [EA]) and 40 healthy controls (HCs). When the prevalence of IgG1 and IgG4 specific to MlEVs was evaluated in serum by ELISA, lower levels of MlEV-specific IgG4 (but not IgG1) were noted in asthmatic patients than in HCs. Among asthmatic patients, significantly lower levels of MIEV-specific IgG4 were noted in patients with NA than in those with EA. Moreover, there was a positive correlation between serum MlEV-specific IgG4 levels and FEV1 (%) values. In asthmatic C57BL/6 mice, MlEVs significantly attenuated neutrophilic airway inflammation by reducing the production of IL-1ß and IL-17 in bronchoalveolar lavage fluid as well as the number of group 3 innate lymphoid cells (ILC3s) in lung tissues. To clarify the functional mechanism of MlEVs in NA, the effect of MlEVs on airway epithelial cells (AECs) and immune cells was investigated ex vivo. According to microarray analysis, MlEVs upregulated hsa-miR-4517 expression in AECs. Moreover, this miRNA could suppress IL-1ß production by monocytes, resulting in the inhibition of ILC3 activation and neutrophil recruitment. These findings suggest that MlEVs could be a novel therapeutic agent for managing unresolved NA by regulating miRNA expression in AECs.


Assuntos
Asma , Vesículas Extracelulares , MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , Micrococcus luteus/genética , Micrococcus luteus/metabolismo , Imunidade Inata , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Líquido da Lavagem Broncoalveolar , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças
4.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233206

RESUMO

Fish-derived collagen has recently emerged as an alternative collagen source with bioactive properties, including the enhancement of hair and skin health. It is also cost-effective and has high bioavailability, in addition to having fewer side-effects compared to collagen from porcine skin or bovine skin. Collagen peptides (CPs) extracted from the scales of Mozambique tilapia (Oreochromis mossambicus) reportedly promote hair and skin health. This study sought to evaluate the effects of CPs on hair growth using in vitro and in vivo models. CP significantly enhanced hair regrowth and the proliferation of human dermal papilla cells (hDPCs) in vitro. CP was orally administered to C57BL/6 mice for 6 weeks to confirm the hair-growth-promoting effects. The mice were divided into four groups: negative control (distilled water), positive control (1 mg/kg of finasteride), CP500 (500 mg/kg of CP), and CP1000 (1000 mg/kg of CP). CP treatment significantly enhanced the proliferation of hDPCs compared to 0.2 µM finasteride, in addition to enhancing hair regrowth. Particularly, CP1000 treatment achieved a hair-growth index similar to that of the PC. In H&E staining, the CP groups exhibited a high A/T ratio. Furthermore, CP increased the expression of hair growth factors (IGF-1, VEGF, krt27, Gprc5d, and Ki67) and decreased the growth inhibitory factor (TGF-ß1). Furthermore, CP significantly upregulated the Wnt/ß-catenin pathways and downregulated the BMP pathways. Therefore, these results indicate that CP could be used as food supplements and nutraceuticals for hair loss prevention as well as hair regrowth during alopecia.


Assuntos
Proteínas Morfogenéticas Ósseas , Colágeno , Cabelo , beta Catenina , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Células Cultivadas , Colágeno/farmacologia , Finasterida/farmacologia , Cabelo/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-34257685

RESUMO

This study investigated the hypothesis that Portulaca oleracea L. exerts antiobesity and antidiabetic effects by evaluating blood lipid profiles, blood glucose control factors, protein expression of lipid metabolism, and insulin sensitivity improvement. Three groups of high-fat diet (HFD) induced obese C57BL/6 mice (n = 8) received treatment with low (5%; HFD + PO5%) or high (10%; HFD + PO10%) concentrations of P. oleracea powder for 12 weeks or no treatment (HFD) and were compared with each other and a fourth control group. Weight gain was reduced by 34% in the HFD + PO10% group compared to the HFD group. Moreover, the perirenal and epididymal fat contents in the HFD + PO10% group were 6.3-fold and 1.5-fold, respectively, lower than those in the HFD group. The atherogenic index (AI) and cardiac risk factor (CRF) results in the P. oleracea-treated groups were significantly lower than those in the HFD group. The homeostasis model assessment of insulin resistance (HOMA-IR) levels was lower in the HFD + PO10% group than in the HFD group. The protein expression levels of the proliferator-activated receptor (PPAR)-α, glucose transporter (GLUT) 4 and PPAR-γ were upregulated in the HFD + PO10% group compared to the HFD group. However, the protein expression levels of tumor necrosis factor (TNF)-α were lower in the P. oleracea-treated groups than in the HFD group. Our results demonstrate that P. oleracea powder could be effectively used to treat and prevent obesity and diabetes-associated diseases through suppression of weight gain and reduction in body fat and blood glucose levels.

6.
Biology (Basel) ; 10(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805810

RESUMO

Novel biomarkers for early diagnosis of pancreatic cancer (PC) are necessary to improve prognosis. We aimed to discover candidate biomarkers by identifying compositional differences of microbiome between patients with PC (n = 38) and healthy controls (n = 52), using microbial extracellular vesicles (EVs) acquired from blood samples. Composition analysis was performed using 16S rRNA gene analysis and bacteria-derived EVs. Statistically significant differences in microbial compositions were used to construct PC prediction models after propensity score matching analysis to reduce other possible biases. Between-group differences in microbial compositions were identified at the phylum and genus levels. At the phylum level, three species (Verrucomicrobia, Deferribacteres, and Bacteroidetes) were more abundant and one species (Actinobacteria) was less abundant in PC patients. At the genus level, four species (Stenotrophomonas, Sphingomonas, Propionibacterium, and Corynebacterium) were less abundant and six species (Ruminococcaceae UCG-014, Lachnospiraceae NK4A136 group, Akkermansia, Turicibacter, Ruminiclostridium, and Lachnospiraceae UCG-001) were more abundant in PC patients. Using the best combination of these microbiome markers, we constructed a PC prediction model that yielded a high area under the receiver operating characteristic curve (0.966 and 1.000, at the phylum and genus level, respectively). These microbiome markers, which altered microbial compositions, are therefore candidate biomarkers for early diagnosis of PC.

7.
Exp Mol Med ; 52(3): 338-347, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203101

RESUMO

The relationship between ambient particulate matter exposure and health has been well established. Ultrafine particles (UFP) with a diameter of 100 nm or less are known to increase pulmonary disease risk. Biological factors in dust containing UFP can cause severe inflammatory reactions. Pulmonary diseases develop primarily as a result of chronic inflammation caused by immune dysfunction. Thus, this review focuses on the adverse pulmonary effects of biological UFP, principally lipopolysaccharide (LPS), and bacterial extracellular vesicles (EVs), in indoor dust and the pathophysiological mechanisms involved in the development of chronic pulmonary diseases. The impact of LPS-induced pulmonary inflammation is based primarily on the amount of inhaled LPS. When relatively low levels of LPS are inhaled, a cascade of immune responses leads to Th2 cell induction, and IL-5 and IL-13 released by Th2 cells contributes to asthma development. Conversely, exposure to high levels of LPS induces a Th17 cell response, leading to increased production of IL-17, which is associated with asthma, COPD, and lung cancer incidence. Responses to bacterial EV exposure can similarly be broadly divided based on whether one of two mechanisms, either intracellular or extracellular, is activated, which depends on the type of the parent cell. Extracellular bacteria-derived EVs can cause neutrophilic inflammation via Th17 cell induction, which is associated with asthma, emphysema, COPD, and lung cancer. On the other hand, intracellular bacteria-derived EVs lead to mononuclear inflammation via Th1 cell induction, which increases the risk of emphysema. In conclusion, future measures should focus on the overall reduction of LPS sources in addition to the improvement of the balance of inhaled bacterial EVs in the indoor environment to minimize pulmonary disease risk.


Assuntos
Pulmão/efeitos dos fármacos , Material Particulado/efeitos adversos , Pneumonia/induzido quimicamente , Enfisema Pulmonar/induzido quimicamente , Animais , Bactérias , Poeira , Humanos , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA