RESUMO
Addressing the global disparity in cancer care necessitates the development of rapid and affordable nucleic acid (NA) testing technologies. This need is particularly critical for cervical cancer, where molecular detection of human papillomavirus (HPV) has emerged as an accurate screening method. However, implementing this transition in low- and middle-income countries has been challenging due to the high costs and centralized facilities required for current NA tests. Here, we present CreDiT (CRISPR Enhanced Digital Testing) for on-site NA detection. The CreDiT platform integrates i) a one-pot CRISPR strategy that simultaneously amplifies both target NAs and analytical signals and ii) a robust fluorescent detection based on digital communication (encoding/decoding) technology. These features enable a rapid assay (<35 minutes) in a single streamlined workflow. We demonstrate the sensitive detection of cell-derived HPV DNA targets down to single copies and accurate identification of HPV types in clinical cervical brushing specimens (n = 121).
Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Feminino , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Sistemas CRISPR-Cas/genética , DNA Viral/genética , Papillomaviridae/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Processamento de Sinais Assistido por Computador , Colo do Útero/virologiaRESUMO
Rapid and precise detection of hydrogen peroxide (H2O2) holds great significance since it is linked to numerous physiological and inorganic catalytic processes. We herein developed a label-free and washing-free strategy to detect H2O2 by employing a hand-held personal glucose meter (PGM) as a signal readout device. By focusing on the fact that the reduced redox mediator ([Fe(CN)6]4-) itself is responsible for the final PGM signal, we developed a new PGM-based strategy to detect H2O2 by utilizing the target H2O2-mediated oxidation of [Fe(CN)6]4- to [Fe(CN)6]3- in the presence of horseradish peroxidase (HRP) and monitoring the reduced PGM signal in response to the target amount. Based on this straightforward and facile design principle, H2O2 was successfully determined down to 3.63 µM with high specificity against various non-target molecules. We further demonstrated that this strategy could be expanded to identify another model target choline by detecting H2O2 produced through its oxidation promoted by choline oxidase. Moreover, we verified its practical applicability by reliably determining extracellular H2O2 released from the breast cancer cell line, MDA-MB-231. This work could evolve into versatile PGM-based platform technology to identify various non-glucose target molecules by employing their corresponding oxidase enzymes, greatly advancing the portable biosensing technologies.
Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Catálise , Colina , GlucoseRESUMO
We herein developed a label-free and washing-free method to detect biological thiols (biothiols) on a personal glucose meter (PGM) utilizing the intrinsic glucose oxidase (GOx)-mimicking activity of gold nanoparticles (AuNPs). By focusing on the fact that this activity could be diminished by target biothiols through their binding onto the AuNP surface, we correlated the concentration of biothiols with that of glucose readily measurable on a PGM and successfully determined cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) down to 0.116, 0.059, and 0.133 µM, respectively, with high specificity against non-target biomolecules. We further demonstrated its practical applicability by reliably detecting target biothiol in heterogeneous human serum. Due to the meritorious features of PGM such as simplicity, portability, and cost-effectiveness, we believe that this work could serve as a powerful platform for biothiol detection in point-of-care settings.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Compostos de Sulfidrila/química , Ouro/química , Glucose Oxidase , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Cisteína/química , Glutationa/química , HomocisteínaRESUMO
We herein describe a novel centrifugal microfluidic system to achieve multiple standard additions, which could minimize the effects of matrix interference and consequently lead to more accurate and reliable measurements of analyte concentrations in complex samples. The system leverages laser-irradiated ferrowax microvalves to automatically control fluid transfer on the disc without the need for external pumps or pressure systems, simplifying the procedures and eliminating the need for manual intervention. The disc incorporates metering chambers with rationally designed varying sizes, which could lead to the formation of six standard addition samples very rapidly in just 2.5 min. The final solutions are designed to contain a target component at gradually increasing concentrations but have an equal final volume containing the same amount of an analyte solution, thereby equalizing the matrix effect that is supposedly caused by the unknown components in the analyte solution. By utilizing this design principle, we were able to successfully quantify a model target component, salivary thiocyanate ions, that could be used as a biomarker for exposure to tobacco smoke. Our centrifugal microfluidic system holds great promise as a powerful analytical tool to achieve fully automated diagnostic microsystems involving a standard addition process.
Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Analíticas Microfluídicas/métodos , Centrifugação/métodosRESUMO
Accurate and efficient detection of DNA is crucial for disease diagnosis and health monitoring. The traditional methods for DNA analysis involve multiple steps, including sample preparation, lysis, extraction, amplification, and detection. In this study, we present a one-step elution-free DNA analysis method based on the combination of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated light-up aptamer transcription (CLAT) assay and a DNA-capturing poly(2-dimethylaminomethyl styrene) (pDMAMS)-coated tube. The sample solution and lysis buffer are added to the pDMAMS-coated tube, and the DNA is efficiently captured on the surface via electrostatic interaction and directly detected by CLAT assay. The ability of the CRISPR/Cas9 system to specifically recognize DNA enables direct detection of DNA captured on the pDMAMS-coated tube. The combination of CLAT assay and pDMAMS-coated tube simplifies DNA detection in a single tube without the need for complicated extraction steps, improving sensitivity. Our platform demonstrated attomolar sensitivity in the detection of target DNA in cell lysate (0.92 aM), urine (7.7 aM), and plasma (94.6 aM) samples within 1 h. The practical applicability of this method was further demonstrated in experiments with tumor-bearing mice. We believe that this approach brings us closer to an all-in-one DNA purification and detection tube system and has potential applications in tissue and liquid biopsies, as well as various other DNA sensing applications.
Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Camundongos , Animais , Sistemas CRISPR-Cas/genética , DNA/análise , OligonucleotídeosRESUMO
We herein describe a polychromatic quantum dot array (PQDA) to compose a community signal ensemble enabling accurate and precise quantification of miRNAs in a multiplexed manner. Advanced multicomponent ultrahigh-resolution patterning technique achieved by capsulation-assisted transfer printing following self-assembly-based poly(methyl methacrylate) (PMMA) patterning is utilized to manufacture the PQDA, which is designed to discharge a target miRNAs-specific set of fluorescent quantum dots (QDs) through the activity of duplex-specific nuclease (DSN). On the basis of the community signal ensemble produced by the discharged QD profiles, target miRNAs are very specifically identified down to a femtomolar level (1.27 fM) in a multiplexed manner over a wide dynamic range of up to 6 orders of magnitude. The practical diagnostic capability of this strategy is also demonstrated by reliably identifying breast cancer-specific miRNAs from heterogeneous cancer cell lysates.
Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , MicroRNAs , Pontos Quânticos , Humanos , Feminino , MicroRNAs/genética , Técnicas Biossensoriais/métodosRESUMO
In this study, we uncover a ligation-free DNA extension method in two adjacent fragmented probes, which are hybridized to target RNA, for developing a ligation-free nucleic acid amplification reaction. In this reaction, DNA elongation occurs from a forward probe to a phosphorothioated-hairpin probe in the presence of target RNA regardless of ligation. The second DNA elongation then occurs simultaneously at the nick site of the phosphorothioated probe and the self-priming region. Therefore, the binding site of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) 12a is repeatedly amplified, inducing a fluorescence signal in the presence of CRISPR-Cas12a. This ligation-free isothermal gene amplification method enables the detection of target RNA with 49.2 fM sensitivity. Moreover, two types of mRNA detection are feasible, thus, demonstrating the potential of this method for cancer companion diagnostics. Notably, the proposed method also demonstrates efficacy when applied for the detection of mRNA extracted from human cells and tumor-bearing mouse tissue and urine samples. Hence, this newly developed ligation-free isothermal nucleic acid amplification system is expected to be widely used in a variety of gene detection platforms.
Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Animais , Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas/genética , DNA/genética , Camundongos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA , RNA MensageiroRESUMO
We herein describe a new multicolor fluorogenic RNA aptasensor to accomplish multiplexed detection of miRNAs. The stem-loop primer (SL primer) entailing a fluorogenic RNA aptamer (FRA) antisense sequence is designed to anneal to target miRNA at its 3' overhang, which would be reverse transcribed by reverse transcriptase (RT) to produce the cDNA sequence followed by the degradation of target miRNA. The T7 promoter-containing primer (T7 primer) is then annealed to the 3' end of the extended cDNA sequence and the following RT-promoted extension in both directions produces the T7 promoter-containing double-stranded DNA (T7 dsDNA). T7 RNA polymerase finally transcribes the T7 dsDNA to produce a large number of RNA transcripts containing FRA sequence, which would produce intense fluorescence signals by forming fluorescent complexes with cognate fluorogens, reflecting the amount of target miRNAs. Based on this unique design principle employing the SL primers to encode several different FRAs with distinct fluorescence profiles, target miRNAs were very specifically determined in a multiplexed manner down to a subpicomolar level. The practical applicability of this technique was also verified by reliably quantifying target miRNAs in serum and human cancer cell lysates.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , MicroRNAs , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , DNA , Humanos , MicroRNAs/genéticaRESUMO
Development of drug-delivery systems that allow simultaneous in vivo imaging has gained much interest. We report a novel strategy to encapsulate metal nanoparticles (NPs) within alginate gel for in vivo imaging. The cell lysate of recombinant Escherichia coli strain, expressing Arabidopsis thaliana phytochelatin synthase and Pseudomonas putida metallothionein genes, was encapsulated within the alginate gel. Incubation of alginate gel with metal ion precursors followed by UV irradiation resulted in the synthesis of high concentrations of metal NPs, such as Au, Ag, CdSe, and EuSe NPs, within the gel. The alginate gel with metal NPs was used as a drug-delivery system by further co-encapsulating doxorubicin and rifampicin, the release of which was made to be pH-dependent. This system can be conveniently and safely used for in vitro and in vivo bioimaging, enabled by the metal NPs formed within the gel matrix without using toxic reducing reagents or surfactants.
Assuntos
Alginatos/química , Portadores de Fármacos/química , Corantes Fluorescentes/química , Géis/química , Nanopartículas Metálicas/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arabidopsis/enzimologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Escherichia coli/genética , Células Hep G2 , Humanos , Masculino , Metalotioneína/genética , Metalotioneína/metabolismo , Metais/química , Camundongos Nus , Pseudomonas putida/enzimologia , Rifampina/química , Rifampina/farmacologiaRESUMO
We, herein, describe a novel method to detect mutation in DNA by utilizing exponential amplification reaction (EXPAR) triggered by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, called CRISPR-EXPAR. The CRISPR system consisting of two Cas9/sgRNA complexes was designed to cut out a specific mutation region within the target DNA, which would consequently promote EXPAR by continuously repeated extension and nicking reactions. As a consequence, a large number of final EXPAR products, which can be monitored through duplex-specific fluorescent staining, are produced. Based on this design principle, we successfully identified a model target mutation within the human epidermal growth factor receptor 2 (HER2) gene down to 437 aM with excellent specificity. The practical capability of this method was verified by reliably identifying the target mutation directly from the genomic DNA (gDNA) extracted from the lung cancer cell line, NCI-H1781 (H1781), and its universal applicability was further confirmed by identifying another EFGF L858R mutation. This technique could serve as a new isothermal platform to identify various mutations by rationally redesigning single guide RNA (sgRNA) according to the target mutation site.
Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , DNA/genética , Humanos , Mutação , RNA Guia de CinetoplastídeosRESUMO
We herein describe an ultrasensitive isothermal method to detect microRNA (miRNA) by utilizing target-induced chain amplification reaction (CAR). The hairpin probe (HP) employed in this strategy is designed to be opened upon binding to target miRNA. The exponential amplification reaction (EXPAR) template (ET) then binds to the exposed stem of HP and DNA polymerase (DP) promotes the extension reactions for both HP and ET, consequently producing intermediate double-stranded DNA product (IP) and concomitantly recycling target miRNA to open another intact HP. The IPs would produce a large number of target-mimicking probes (TMPs) and trigger probes (TPs) through the continuously repeated nicking and extension reactions at the two separated nicking sites within the IP. TMP triggers another CAR cycle by binding to intact HP as target miRNA did while TP promotes conventional EXPAR by independently binding to free ET. As a consequence of these interconnected reaction systems, a large number of final double-stranded DNA products (FPs) are produced, which can be monitored by measuring the fluorescent signal produced from duplex-specific fluorescent dye. Based on this unique design principle, the target miRNA was successfully determined down to even a single copy with high selectivity against non-specific miRNAs. The practical applicability of this method was also verified by reliably detecting target miRNA included in the total RNA extracted from the human cancer cell.
Assuntos
Técnicas Biossensoriais , MicroRNAs , DNA , Corantes Fluorescentes , Humanos , Técnicas de Amplificação de Ácido NucleicoRESUMO
Exosomal messenger RNA (mRNA) has emerged as a valuable biomarker for liquid biopsy-based disease diagnosis and prognosis due to its stability in body fluids and its biological regulatory function. Here, we report a rapid one-step isothermal gene amplification reaction based on three-way junction (3WJ) formation and the successful detection of urinary exosomal mRNA from tumor-bearing mice. The 3WJ structure can be formed by the association of 3WJ probes (3WJ-template and 3WJ-primer) in the presence of target RNA. After 3WJ structure formation, the 3WJ primer is repeatedly extended and cleaved by a combination of DNA polymerase and nicking endonuclease, producing multiple signal primers. Subsequently, the signal primers promote a specially designed network reaction pathway to produce G-quadruplex probes under isothermal conditions. Finally, G-quadruplex structure produces highly enhanced fluorescence signal upon binding to thioflavin T. This method provides a detection limit of 1.23 pM (24.6 amol) with high selectivity for the target RNA. More importantly, this method can be useful for the sensing of various kinds of mRNA, including breast cancer cellular mRNA, breast cancer exosomal mRNA, and even urinary exosomal mRNA from breast cancer mice. We anticipate that the developed RNA detection assay can be used for various biomedical applications, such as disease diagnosis, prognosis, and treatment monitoring.
Assuntos
Técnicas Biossensoriais , Quadruplex G , Animais , Amplificação de Genes , Limite de Detecção , Camundongos , Técnicas de Amplificação de Ácido Nucleico , RNA MensageiroRESUMO
We herein describe a personal glucose meter (PGM)-based method for a label-free and washing-free determination of alkaline phosphatase (ALP) activity, which relies on the cascade enzymatic reactions promoted by hexokinase and pyruvate kinase to couple ALP activity with the amount of glucose. In principle, the presence of target ALP scavenges on adenosine 5'-triphosphate (ATP), a phosphate source for hexokinase-catalyzed reactions, and thus suppresses the ensuing cascade enzymatic reactions. As a result, the initial high amount of glucose is maintained and the amount of glucose, which is proportional to ALP activity, is simply measured by a hand-held PGM. Based on this novel strategy, we successfully determined the ALP activity down to 8.9 U/L with the high selectivity. In addition, the diagnostic capability of this method was demonstrated by reliably assaying the ALP activity in non-diluted human blood without any pretreatment steps.
RESUMO
We devised a new method to detect cancer-related mutations based on target-initiated rolling circle amplification in combination with fluorescence polarization. We then applied this method to identify the presence of KRAS G13D and G12D, two of the most frequent mutations found in colorectal cancer patients, demonstrating high sensitivity and specificity.
Assuntos
Polarização de Fluorescência/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Proto-Oncogênicas p21(ras)/análise , Linhagem Celular Tumoral , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Humanos , Limite de Detecção , Mutação , Hibridização de Ácido Nucleico , Proteínas Proto-Oncogênicas p21(ras)/genética , Reprodutibilidade dos TestesRESUMO
We herein describe a simple but efficient method for the determination of terminal transferase (TdT) activity, which relies on our finding that Fe(III)-quenched boron-dipyrromethene (BODIPY)-ATP is utilized as a switch-on monomer for polymerization and enables the facile synthesis of fluorescence oligonucleotides without additional, post-processing steps. As TdT carries out the synthesis of DNA by adding the monomers into growing chains, Fe(III) is displaced from BODIPY with the release of pyrophosphate group, which consequently leads to the generation of highly fluorescent long oligonucleotides. With this strategy, we selectively detected the TdT activity with high sensitivity. In addition, its practical applicability was successfully demonstrated by determining TdT activities in human serum.
Assuntos
Ensaios Enzimáticos/métodos , Polimerização , Transferases/metabolismo , Trifosfato de Adenosina/química , Compostos de Boro/química , Estudos de Viabilidade , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Ferro/química , Limite de Detecção , Oligonucleotídeos/metabolismoRESUMO
We developed a label-free and washing-free method for biomolecular detection using a personal glucose meter (PGM). ATP was selected as a model target, and cascade enzymatic reactions promoted by hexokinase and pyruvate kinase were adopted to link the amount of ATP to glucose that is detectable by a hand-held PGM. In principle, the presence of target ATP enables hexokinase to catalyze the conversion of glucose to glucose 6-phosphate by providing a phosphate group to glucose, and thus the amount of glucose is decreased in proportion to the amount of ATP. In addition, adenosine 5'-diphosphate (ADP), which is generated after hexokinase-catalyzed enzymatic reaction, is recovered to ATP by a pyruvate kinase enzyme. The regenerated ATP is again supplemented to catalyze multiple rounds of cascade enzymatic reactions, leading to signal amplification. As a result, the change of glucose amount that is inversely proportional to ATP amount is simply measured by a hand-held PGM. By employing this strategy, we successfully determined ATP down to 49 nM with high selectivity even in real samples such as tap water, human serum, and bovine urine. Importantly, the developed system does not require expensive modification and washing steps but is conveniently operated with a commercially available PGM, which would pave the way for the development of a simple and cost-effective sensing platform.
Assuntos
Trifosfato de Adenosina/análise , Técnicas Biossensoriais/instrumentação , Glucose/química , Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/química , Trifosfato de Adenosina/urina , Animais , Bovinos , Eletroquímica , Humanos , Água/químicaRESUMO
We herein describe novel amine-grafted metal-organic frameworks (MOFs) as a promising alternative to natural peroxidase enzyme and their applications for a fluorescent assay of choline (Cho) and acetylcholine (ACh). Among diverse amine-functionalized MOFs, N,N,N',N'-tetramethyl-1,4-butanediamine (TMBDA)-functionalized MIL-100(Fe) (TMBDA-MIL-100(Fe)) exhibited the highest peroxidase activity by developing intense fluorescence from Amplex UltraRed (AUR) in the presence of H2O2, which was presumably due to the synergetic effect of the enhanced negative potential and precisely controlled molecular size of the grafted diamine. Based on the excellent peroxidase-like activity of TMBDA-MIL-100(Fe), choline and ACh were reliably determined down to 0.027 and 0.036µM, respectively. Furthermore, practical applicability of this strategy was successfully demonstrated by detecting choline and ACh in spiked samples of milk and serum, respectively. This work highlights the advantages of amine-grafted MOFs for the preparation of biomimetic catalysts, extending their scope to biosensor applications.
Assuntos
Acetilcolina/análise , Técnicas Biossensoriais/métodos , Colina/análise , Compostos de Ferro/química , Peroxidase/química , Putrescina/análogos & derivados , Acetilcolina/sangue , Aminação , Animais , Catálise , Colina/sangue , Humanos , Leite/química , Modelos Moleculares , Compostos Organometálicos/química , Putrescina/química , Espectrometria de Fluorescência/métodosRESUMO
In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.
Assuntos
Colorimetria/métodos , MicroRNAs/metabolismo , Catálise , Estudos de Viabilidade , Humanos , MicroRNAs/sangue , MicroRNAs/genéticaRESUMO
Multifunctional carbon-based nanodots (C-dots) are synthesized using atmospheric plasma treatments involving reactive gases (oxygen and nitrogen). Surface design was achieved through one-step plasma treatment of C-dots (AC-paints) from polyethylene glycol used as a precursor. These AC-paints show high fluorescence, low cytotoxicity and excellent cellular imaging capability. They exhibit bright fluorescence with a quantum yield twice of traditional C-dots. The cytotoxicity of AC-paints was tested on BEAS2B, THLE2, A549 and hep3B cell lines. The in vivo experiments further demonstrated the biocompatibility of AC-paints using zebrafish as a model, and imaging tests demonstrated that the AC-paints can be used as bio-labels (at a concentration of <5 mg mL-1). Particularly, the oxygen plasma-treated AC-paints (AC-paints-O) show antibacterial effects due to increased levels of reactive oxygen species (ROS) in AC-paints (at a concentration of >1 mg mL-1). AC-paints can effectively inhibit the growth of Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). Such remarkable performance of the AC-paints has important applications in the biomedical field and environmental systems.
Assuntos
Carbono/química , Fluorescência , Gases em Plasma , Pontos Quânticos/química , Acinetobacter baumannii/efeitos dos fármacos , Animais , Antibacterianos/química , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Humanos , Teste de Materiais , Polietilenoglicóis , Espécies Reativas de Oxigênio/metabolismo , Peixe-ZebraRESUMO
We herein describe a new mass spectrometry-based method for multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification (SDA) reaction. In this method, allele-specific ligation is first performed to discriminate base sequence variations at the SNP site within the PCR-amplified target DNA. The primary ligation probe is extended by a universal primer annealing site while the secondary ligation probe has base sequences as an overhang with a nicking enzyme recognition site and complementary mass marker sequence. The ligation probe pairs are ligated by DNA ligase only at specific allele in the target DNA and the resulting ligated product serves as a template to promote the SDA reaction using a universal primer. This process isothermally amplifies short DNA fragments, called mass markers, to be analyzed by mass spectrometry. By varying the sizes of the mass markers, we successfully demonstrated the multiplex SNP genotyping capability of this method by reliably identifying several BRCA mutations in a multiplex manner with mass spectrometry.