Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Adv Sci (Weinh) ; 11(19): e2306684, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482992

RESUMO

Cryotherapy leverages controlled freezing temperature interventions to engender a cascade of tumor-suppressing effects. However, its bottleneck lies in the standalone ineffectiveness. A promising strategy is using nanoparticle therapeutics to augment the efficacy of cryotherapy. Here, a cold-responsive nanoplatform composed of upconversion nanoparticles coated with silica - chlorin e6 - hyaluronic acid (UCNPs@SiO2-Ce6-HA) is designed. This nanoplatform is employed to integrate cryotherapy with photodynamic therapy (PDT) in order to improve skin cancer treatment efficacy in a synergistic manner. The cryotherapy appeared to enhance the upconversion brightness by suppressing the thermal quenching. The low-temperature treatment afforded a 2.45-fold enhancement in the luminescence of UCNPs and a 3.15-fold increase in the photodynamic efficacy of UCNPs@SiO2-Ce6-HA nanoplatforms. Ex vivo tests with porcine skins and the subsequent validation in mouse tumor tissues revealed the effective HA-mediated transdermal delivery of designed nanoplatforms to deep tumor tissues. After transdermal delivery, in vivo photodynamic therapy using the UCNPs@SiO2-Ce6-HA nanoplatforms resulted in the optimized efficacy of 79% in combination with cryotherapy. These findings underscore the Cryo-PDT as a truly promising integrated treatment paradigm and warrant further exploring the synergistic interplay between cryotherapy and PDT with bright upconversion to unlock their full potential in cancer therapy.


Assuntos
Ácido Hialurônico , Nanopartículas , Fotoquimioterapia , Animais , Fotoquimioterapia/métodos , Camundongos , Ácido Hialurônico/química , Nanopartículas/química , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Crioterapia/métodos , Clorofilídeos , Porfirinas/química , Porfirinas/administração & dosagem , Modelos Animais de Doenças , Fármacos Fotossensibilizantes/administração & dosagem , Administração Cutânea , Dióxido de Silício/química , Suínos
2.
J Microbiol Biotechnol ; 34(3): 644-653, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213288

RESUMO

Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/ß and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.


Assuntos
NF-kappa B , Pinus , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Imunidade Inata , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo
3.
Int J Biochem Cell Biol ; 162: 106454, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37574041

RESUMO

Cisplatin, a widely prescribed chemotherapeutic agent for treating solid tumors, induces DNA adducts and activates cellular defense mechanisms, including DNA repair, cell cycle checkpoint control, and apoptosis. Considering the circadian rhythmicity displayed by most chemotherapeutic agents and their varying therapeutic efficacy based on treatment timing, our study aimed to investigate whether the circadian clock system influences the DNA damage responses triggered by cisplatin in synchronized cells. We examined the DNA damage responses in circadian-synchronized wild-type mouse embryonic fibroblasts (WT-MEF; clock-proficient cells), cryptochrome1 and 2 double knock-out MEF (CRYDKO; clock-deficient cells), and mouse hepatocarcinoma Hepa1c1c7 cells. Varying the treatment time resulted in a significant difference in the rate of platinum-DNA adduct removal specifically in circadian-synchronized WT-MEF, while CRYDKO did not exhibit such variation. Moreover, diurnal variation in other DNA damage responses, such as cell cycle checkpoint activity indicated by p53 phosphorylation status and apoptosis measured by DNA break frequency, was observed only in circadian-synchronized WT-MEF, not in CRYDKO or mouse hepatocarcinoma Hepa1c1c7 cells. These findings highlight that the DNA damage responses triggered by cisplatin are indeed governed by circadian control exclusively in clock-proficient cells. This outcome bears potential implications for enhancing or devising chronotherapy approaches for cancer patients.


Assuntos
Relógios Circadianos , Neoplasias , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Adutos de DNA/uso terapêutico , Dano ao DNA , Fibroblastos/metabolismo , Reparo do DNA , Relógios Circadianos/genética , Neoplasias/genética , Apoptose
4.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047518

RESUMO

Etoposide (ETO) is an anticancer drug that targets topoisomerase II (TOP2). It stabilizes a normally transient TOP2-DNA covalent complex (TOP2cc), thus leading to DNA double-strand breaks (DSBs). Tyrosyl-DNA phosphodiesterases two (TDP2) is directly involved in the repair of TOP2cc by removing phosphotyrosyl peptides from 5'-termini of DSBs. Recent studies suggest that additional factors are required for TOP2cc repair, which include the proteasome and the zinc finger protein associated with TDP2 and TOP2, named ZATT. ZATT may alter the conformation of TOP2cc in a way that renders the accessibility of TDP2 for TOP2cc removal. In this study, our genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens revealed that ZATT also has a TDP2-independent role in promoting cell survival following ETO treatment. ZATT KO cells showed relatively higher ETO sensitivity than TDP2-KO cells, and ZATT/TDP2 DKO cells displayed additive hypersensitivity to ETO treatment. The study using a series of deletion mutants of ZATT determined that the N-terminal 1-168 residues of ZATT are required for interaction with TOP2 and this interaction is critical to ETO sensitivity. Moreover, depletion of ZATT resulted in accelerated TOP2 degradation after ETO or cycloheximide (CHX) treatment, suggesting that ZATT may increase TOP2 stability and likely participate in TOP2 turnover. Taken together, this study suggests that ZATT is a critical determinant that dictates responses to ETO treatment and targeting. ZATT is a promising strategy to increase ETO efficacy for cancer therapy.


Assuntos
Proteínas de Ligação a DNA , Venenos , Etoposídeo/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Diester Fosfórico Hidrolases/metabolismo , DNA/metabolismo
5.
BMJ Open ; 12(11): e058032, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332952

RESUMO

OBJECTIVE: Mindfulness-based stress reduction (MBSR) is a meditation-based therapy originally recommended for stress management. However, it is currently used to alleviate sleep disturbances. Therefore, this contemporary systematic review aimed to elucidate the clinical effects of MBSR on sleep quality and sleep-related daytime impairment in adults with sleep disturbances, including chronic insomnia disorders. DESIGN: Systematic review and meta-analysis of randomised controlled trials (RCTs). METHODS: A comprehensive search was conducted using the following databases: Ovid MEDLINE, AMED, Ovidembase, PsycINFO, Cochrane Library, CINAHL, and four domestic databases: KoreaMed, KISS, KMbase and NDSL. The final search update was performed in June 2022. Two researchers independently selected relevant studies, assessed the risk of bias and extracted the data. RESULTS: Of the 7516 records searched, 20 RCTs and 21 reports were included. In the subgroup analysis, MBSR did not improve objective or subjective sleep quality in chronic insomnia and cancers. However, MBSR versus waitlist control might have been effective in improving subjective sleep quality, but with substantial heterogeneity (standardised mean difference=-0.32; 95% CI: -0.56 to -0.08; I2=71%). In addition, MBSR compared with active control did not improve the sleep-related daytime impairments including depression, anxiety, stress, fatigue and quality of life. The overall risk of bias included in this review was a concern because of performance and detection bias. CONCLUSIONS: MBSR might be ineffective for improving sleep quality in patients with chronic insomnia and cancers. In addition, more than half of the RCTs included in this review had small sample sizes and were vulnerable to performance and detection biases. Therefore, well-designed RCTs with larger sample sizes are required to confirm the clinical effects of MBSR in adults with sleep disturbances. PROSPERO REGISTRATION NUMBER: CRD42015027963.


Assuntos
Atenção Plena , Neoplasias , Distúrbios do Início e da Manutenção do Sono , Transtornos do Sono-Vigília , Adulto , Humanos , Estresse Psicológico/terapia , Estresse Psicológico/etiologia , Distúrbios do Início e da Manutenção do Sono/terapia , Transtornos do Sono-Vigília/terapia , Sono
6.
Sci Adv ; 8(19): eabm6638, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559673

RESUMO

Exploiting cancer vulnerabilities is critical for the discovery of anticancer drugs. However, tumor suppressors cannot be directly targeted because of their loss of function. To uncover specific vulnerabilities for cells with deficiency in any given tumor suppressor(s), we performed genome-scale CRISPR loss-of-function screens using a panel of isogenic knockout cells we generated for 12 common tumor suppressors. Here, we provide a comprehensive and comparative dataset for genetic interactions between the whole-genome protein-coding genes and a panel of tumor suppressor genes, which allows us to uncover known and new high-confidence synthetic lethal interactions. Mining this dataset, we uncover essential paralog gene pairs, which could be a common mechanism for interpreting synthetic lethality. Moreover, we propose that some tumor suppressors could be targeted to suppress proliferation of cells with deficiency in other tumor suppressors. This dataset provides valuable information that can be further exploited for targeted cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Mutações Sintéticas Letais
7.
Nucleic Acids Res ; 49(14): 8214-8231, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34320214

RESUMO

Because of essential roles of DNA damage response (DDR) in the maintenance of genomic integrity, cellular homeostasis, and tumor suppression, targeting DDR has become a promising therapeutic strategy for cancer treatment. However, the benefits of cancer therapy targeting DDR are limited mainly due to the lack of predictive biomarkers. To address this challenge, we performed CRISPR screens to search for genetic vulnerabilities that affect cells' response to DDR inhibition. By undertaking CRISPR screens with inhibitors targeting key DDR mediators, i.e. ATR, ATM, DNAPK and CHK1, we obtained a global and unbiased view of genetic interactions with DDR inhibition. Specifically, we identified YWHAE loss as a key determinant of sensitivity to CHK1 inhibition. We showed that KLHL15 loss protects cells from DNA damage induced by ATM inhibition. Moreover, we validated that APEX1 loss sensitizes cells to DNAPK inhibition. Additionally, we compared the synergistic effects of combining different DDR inhibitors and found that an ATM inhibitor plus a PARP inhibitor induced dramatic levels of cell death, probably through promoting apoptosis. Our results enhance the understanding of DDR pathways and will facilitate the use of DDR-targeting agents in cancer therapy.


Assuntos
Proteínas 14-3-3/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA/genética , Proteína Quinase Ativada por DNA/genética , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Sistemas CRISPR-Cas/genética , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Instabilidade Genômica/genética , Humanos , Proteínas dos Microfilamentos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
8.
Oncogenesis ; 9(9): 85, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32989218

RESUMO

The ERK1/2 pathway is one of the most commonly dysregulated pathways in human cancers and controls many vital cellular processes. Although many ERK1/2 kinase substrates have been identified, the diversity of ERK1/2 mediated processes suggests the existence of additional targets. Here, we identified Deoxyhypusine synthase (DHPS), an essential hypusination enzyme regulating protein translation, as a major and direct-binding protein of ERK1/2. Further experiments showed that ERK1/2 phosphorylate DHPS at Ser-233 site. The Ser-233 phosphorylation of DHPS by ERK1/2 is important for its function in cell proliferation. Moreover, we found that higher DHPS expression correlated with poor prognosis in lung adenocarcinoma and increased resistance to inhibitors of the ERK1/2 pathway. In summary, our results suggest that ERK1/2-mediated DHPS phosphorylation is an important mechanism that underlies protein translation and that DHPS expression is a potent biomarker of response to therapies targeting ERK1/2-pathway.

10.
Oncogene ; 39(16): 3245-3257, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086441

RESUMO

ATR and CHK1 play key roles in the protection and recovery of the stalled replication forks. Claspin, an adaptor for CHK1 activation, is essential for DNA damage signaling and efficient replication fork progression. Here, we show that tristetraprolin (TTP), an mRNA-binding protein, can modulate the replication stress response via stabilization of Claspin mRNA. TTP depletion compromised specifically in the phosphorylation of CHK1, but not p53 or H2AX among other ATR substrates, and produced CHK1-defective replication phenotypes including accumulation of stalled replication forks. Importantly, the expression of siRNA-resistant TTP in TTP-deficient cells restored CHK1 phosphorylation and reduced the number of stalled replication forks as close to the control cells. Besides, we found that TTP was required for efficient replication fork progression even in the absence of exogenous DNA damage in a Claspin-dependent manner. Mechanistically, TTP was able to bind to the 3'-untranslated region of Claspin mRNA to increase the stability of Claspin mRNA which eventually contributed to the subsequent ATR-CHK1 activation upon DNA damage. Taken together, our results revealed an intimate link between TTP-dependent Claspin mRNA stability and ATR-CHK1-dependent replication fork stability to maintain replication fork integrity and chromosomal stability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Replicação do DNA/genética , Estabilidade de RNA/genética , Tristetraprolina/genética , Regiões 3' não Traduzidas/genética , Células A549 , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase 1 do Ponto de Checagem/genética , Instabilidade Cromossômica/genética , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Células HCT116 , Histonas/genética , Humanos , RNA Mensageiro/genética , Estresse Fisiológico/genética , Proteína Supressora de Tumor p53/genética
11.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936141

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that is associated with systemic inflammation and results in the destruction of joints and cartilage. The pathogenesis of RA involves a complex inflammatory process resulting from the action of various proinflammatory cytokines and, therefore, many novel therapeutic agents to block cytokines or cytokine-mediated signaling have been developed. Here, we tested the preventive effects of a small peptide, AESIS-1, in a mouse model of collagen-induced arthritis (CIA) with the aim of identifying a novel safe and effective biological for treating RA. This novel peptide significantly suppressed the induction and development of CIA, resulting in the suppression of synovial inflammation and cartilage degradation in vivo. Moreover, AESIS-1 regulated JAK/STAT3-mediated gene expression in vitro. In particular, the gene with the most significant change in expression was suppressor of cytokine signaling 3 (Socs3), which was enhanced 8-fold. Expression of the STAT3-specific inhibitor, Socs3, was obviously enhanced dose-dependently by AESIS-1 at both the mRNA and protein levels, resulting in a significant reduction of STAT3 phosphorylation in splenocytes from severe CIA mice. This indicated that AESIS-1 regulated STAT3 activity by upregulation of SOCS3 expression. Furthermore, IL-17 expression and the frequency of Th17 cells were considerably decreased by AESIS-1 in vivo and in vitro. Collectively, our data suggest that the novel synthetic peptide AESIS-1 could be an effective therapeutic for treating RA via the downregulation of STAT3 signaling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/prevenção & controle , Peptídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Colágeno , Modelos Animais de Doenças , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
ACS Appl Mater Interfaces ; 11(30): 26571-26580, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31274281

RESUMO

A recyclable, aqueous phase functioning and biocompatible photon upconverting system is developed. Hollow mesoporous silica microcapsules (HMSMs) with ordered radial mesochannels were employed, for the first time, as vehicles for the post-encapsulation of oil phase triplet-triplet annihilation upconversion (TTA-UC), with the capability of homogeneous suspension in water. In-depth characterization of such upconverting oil-laden HMSMs (UC-HMSMs) showed that the mesoporous silica shells reversibly stabilized the encapsulated UC oil in water to allow efficient upconverted emission, even under aerated conditions. In addition, the UC-HMSMs were found to actively bind to the surface of human mesenchymal stem cells without significant cytotoxicity and displayed upconverted bright blue emission under 640 nm excitation, indicating a potential of our new TTA-UC system in biophotonic applications. These findings reveal the great promise of UC-HMSMs to serve as ideal vehicles not only for ultralow-power in vivo imaging but also for stem cell labeling, to facilitate the tracking of tumor cells in animal models.


Assuntos
Materiais Biocompatíveis/química , Cápsulas/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Imagem Molecular/métodos , Fótons , Dióxido de Silício/química , Água/química
13.
Sci Rep ; 9(1): 6829, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048776

RESUMO

Synergetic strengthening induced by plastic strain incompatibility at the interface, and the resulting extra geometrically necessary dislocations (GNDs) generated during plastic deformation, were investigated to understand the origin of extra strength in heterogeneous structured (HS) materials. The mechanism of extra GND generation in twinning-induced plasticity (TWIP)-interstitial free (IF) steel layered sheet was quantitatively analyzed by conducting in situ neutron scattering tensile test. Load partitioning due to the different mechanical properties between the TWIP-steel core and IF-steel sheath at the TWIP/IF interface was observed during the in situ tensile testing. Because of the plastic strain incompatibility from load partitioning, extra GNDs are generated and saturate during tensile deformation. The extra GNDs can be correlated with the back-stress evolution of the HS materials, which contributes to the strength of layered materials. Because of the back-stress evolution caused by load partitioning, the strength of TWIP-IF layered steel is higher than the strength estimated by the rule-of-mixtures. This finding offers a mechanism by which extra GNDs are generated during load partitioning and shows how they contribute to the mechanical properties of HS materials.

14.
Nat Commun ; 10(1): 1577, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952868

RESUMO

DNA double-strand break (DSB) signaling and repair are critical for genome integrity. They rely on highly coordinated processes including posttranslational modifications of proteins. Here we show that Pellino1 (Peli1) is a DSB-responsive ubiquitin ligase required for the accumulation of DNA damage response proteins and efficient homologous recombination (HR) repair. Peli1 is activated by ATM-mediated phosphorylation. It is recruited to DSB sites in ATM- and γH2AX-dependent manners. Interaction of Peli1 with phosphorylated histone H2AX enables it to bind to and mediate the formation of K63-linked ubiquitination of NBS1, which subsequently results in feedback activation of ATM and promotes HR repair. Collectively, these results provide a DSB-responsive factor underlying the connection between ATM kinase and DSB-induced ubiquitination.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Humanos , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Int J Mol Sci ; 19(11)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380668

RESUMO

Genetic loss or mutations in tumor suppressor genes promote tumorigenesis. The prospective tumor suppressor tristetraprolin (TTP) has been shown to negatively regulate tumorigenesis through destabilizing the messenger RNAs of critical genes implicated in both tumor onset and tumor progression. Regulation of TTP has therefore emerged as an important issue in tumorigenesis. Similar to other tumor suppressors, TTP expression is frequently downregualted in various human cancers, and its low expression is correlated with poor prognosis. Additionally, disruption in the regulation of TTP by various mechanisms results in the inactivation of TTP protein or altered TTP expression. A recent study showing alleviation of Myc-driven lymphomagenesis by the forced expression of TTP has shed light on new therapeutic avenues for cancer prevention and treatment through the restoration of TTP expression. In this review, we summarize key oncogenes subjected to the TTP-mediated mRNA degradation, and discuss how dysregulation of TTP can contribute to tumorigenesis. In addition, the control mechanism underlying TTP expression at the posttranscriptional and posttranslational levels will be discussed.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Tristetraprolina/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Progressão da Doença , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tristetraprolina/metabolismo
16.
Comput Methods Programs Biomed ; 157: 85-94, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29477437

RESUMO

BACKGROUND AND OBJECTIVE: Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. METHODS: The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. RESULTS: Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. CONCLUSIONS: Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Diagnóstico por Computador/instrumentação , Aprendizado de Máquina , Mamografia/métodos , Neoplasias da Mama/classificação , Feminino , Humanos , Redes Neurais de Computação , Probabilidade , Sistemas de Informação em Radiologia , Reprodutibilidade dos Testes
17.
J Immunol Res ; 2018: 9580561, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687767

RESUMO

Radotinib (Supect™) was developed to treat chronic myeloid leukemia (CML) as a BCR-ABL1 tyrosine kinase inhibitor (TKI). Other TKIs, including imatinib and nilotinib, were also developed for treatment of CML, and recent studies were increasing about the therapeutic effects of other TKIs on solid tumors. However, the effect of radotinib on solid tumors has not yet been investigated. In this study, radotinib killed CML cell line K562 directly; however, radotinib did not enhance NK cell cytotoxicity against K562 cells. Because K562 is known as a Fas-negative cell line, we investigated whether radotinib could regulate cell cytotoxicity against various Fas-expressing solid cancer cell lines. Radotinib dramatically increased NK cell cytotoxicity against various Fas-expressing solid cancer cells, including lung, breast, and melanoma cells. Additionally, the efficiency of radotinib-enhanced cytotoxicity was lower in Fas siRNA-transfected cells than in negative controls, suggesting that Fas signaling might be involved in the radotinib-enhanced NK cell cytotoxicity. This study provides the first evidence that radotinib could be used as an effective and strong therapeutic to treat solid tumors via upregulation of NK cell cytotoxicity, suggesting that radotinib has indirect killing mechanisms via upregulation of antitumor innate immune responses as well as direct killing activities for CML cells.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Neoplasias/tratamento farmacológico , Pirazinas/uso terapêutico , Receptor fas/metabolismo , Antineoplásicos/farmacologia , Apoptose , Benzamidas/farmacologia , Citotoxicidade Imunológica , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Humanos , Imunidade Inata , Células K562 , Ativação Linfocitária , Pirazinas/farmacologia , RNA Interferente Pequeno/genética , Receptor fas/genética
18.
Int J Mol Sci ; 17(11)2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27827925

RESUMO

Ultraviolet (UV) radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PP). If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER). The NER pathway has multiple components including seven xeroderma pigmentosum (XP) proteins (XPA to XPG) and numerous auxiliary factors, including ataxia telangiectasia and Rad3-related (ATR) protein kinase and RCC1 like domain (RLD) and homologous to the E6-AP carboxyl terminus (HECT) domain containing E3 ubiquitin protein ligase 2 (HERC2). In this review we highlight recent data on the transcriptional and posttranslational regulation of NER activity.


Assuntos
Reparo do DNA , Processamento de Proteína Pós-Traducional , Neoplasias Cutâneas/genética , Transcrição Gênica , Raios Ultravioleta/efeitos adversos , Xeroderma Pigmentoso/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Dímeros de Pirimidina/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Ubiquitina-Proteína Ligases , Xeroderma Pigmentoso/etiologia , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
19.
BMB Rep ; 49(10): 566-571, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27470212

RESUMO

Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].


Assuntos
Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , Reparo do DNA/efeitos dos fármacos , Raios Ultravioleta , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Reparo do DNA/efeitos da radiação , Humanos , Immunoblotting , Fosforilação/efeitos dos fármacos
20.
Oncotarget ; 7(22): 32980-9, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27145275

RESUMO

Non-thermal plasma (NTP) has been emerging as a potential cancer therapeutic. However, the practical use of NTP as a cancer therapy requires a better understanding of the precise mechanisms underlying NTP-induced DNA damage responses in order to achieve optimal efficacy. It has been shown that the addition of oxygen gas flow during NTP treatment (NTPO), when compared to NTP exposure alone, can induce a 2-3 fold greater generation of intracellular reactive oxygen species (ROS) in A549 cells. Here, we examined NTPO-induced DNA damage responses and found that NTPO generated a substantial number of genomic DNA lesions and breaks that activated ATR-mediated cell-cycle checkpoints. In addition, we discovered that NTPO-induced DNA lesions were primarily removed by base excision repair (BER) rather than by nucleotide excision repair (NER). Therefore, the inhibition of the BER pathway using a PARP1 inhibitor drastically induced the phosphorylation of γH2AX, and was followed by the programmed cell death of cancer cells. However, the knock-down of XPA, which inhibited the NER pathway, had no effect on NTPO-induced phosphorylation of γH2AX. Finally, in agreement with a recent report, we found a circadian rhythm of PARP1 activity in normal mouse embryonic fibroblasts that needed for cell viability upon NTPO treatment. Taken together, our findings provided an advanced NTP regimen for cancer treatment by combining NTPO treatment with chemical adjuvants for the inhibition of ATR- and PARP1-activated DNA damage responses, and circadian timing of treatment.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Relógios Circadianos/efeitos dos fármacos , Dano ao DNA , Neoplasias Pulmonares/terapia , Melanoma/terapia , Gases em Plasma/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Células A549 , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Relógios Circadianos/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA