Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Neurotherapeutics ; 21(4): e00357, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631990

RESUMO

Epilepsy, a complex neurological disorder, is characterized by recurrent seizures caused by aberrant electrical activity in the brain. Central to this study is the role of lysosomal dysfunction in epilepsy, which can lead to the accumulation of toxic substrates and impaired autophagy in neurons. Our focus is on phosphodiesterase-4 (PDE4), an enzyme that plays a crucial role in regulating intracellular cyclic adenosine monophosphate (cAMP) levels by converting it into adenosine monophosphate (AMP). In pathological states, including epilepsy, increased PDE4 activity contributes to a decrease in cAMP levels, which may exacerbate neuroinflammatory responses. We hypothesized that amlexanox, an anti-inflammatory drug and non-selective PDE4 inhibitor, could offer neuroprotection by addressing lysosomal dysfunction and mitigating neuroinflammation, ultimately preventing neuronal death in epileptic conditions. Our research utilized a pilocarpine-induced epilepsy animal model to investigate amlexanox's potential benefits. Administered intraperitoneally at a dose of 100 â€‹mg/kg daily following the onset of a seizure, we monitored its effects on lysosomal function, inflammation, neuronal death, and cognitive performance in the brain. Tissue samples from various brain regions were collected at predetermined intervals for a comprehensive analysis. The study's results were significant. Amlexanox effectively improved lysosomal function, which we attribute to the modulation of zinc's influx into the lysosomes, subsequently enhancing autophagic processes and decreasing the release of inflammatory factors. Notably, this led to the attenuation of neuronal death in the hippocampal region. Additionally, cognitive function, assessed through the modified neurological severity score (mNSS) and the Barnes maze test, showed substantial improvements after treatment with amlexanox. These promising outcomes indicate that amlexanox has potential as a therapeutic agent in the treatment of epilepsy and related brain disorders. Its ability to combat lysosomal dysfunction and neuroinflammation positions it as a potential neuroprotective intervention. While these findings are encouraging, further research and clinical trials are essential to fully explore and validate the therapeutic efficacy of amlexanox in epilepsy management.

2.
Ann Med ; 55(2): 2288306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38052061

RESUMO

BACKGROUND: The use of a single abnormal finding on electrocardiography (ECG) is not recommended for stratifying the risk of cardiovascular (CV) events in low-risk general populations because of its low discriminative power. However, the value of a scoring system containing multiple abnormal ECG findings for predicting CV death has not been sufficiently evaluated. METHODS: In a prospective community-based cohort study, 8417 participants without atherosclerotic CV diseases (ASCVDs) and any related symptoms were followed for 18 years. The standard 12-lead ECGs were recorded at baseline and the ECG findings were categorized using the Minnesota code classification. CV deaths were defined as death from myocardial infarction (MI), chronic ischemic heart disease, heart failure, fatal arrhythmia, cerebrovascular event, pulmonary thromboembolism, peripheral vascular disease and sudden cardiac arrest and identified using the Korean National Statistical Office (KOSTAT) database. RESULTS: In a multivariate Cox proportional hazard (CPH) model, major and minor ST-T wave abnormalities, atrial fibrillation (AF), Q waves in the anterior leads, the lack of Q waves in the posterior leads, high amplitudes of the left and right precordial leads, left axis deviation and sinus tachycardia were associated with higher risks of CV deaths. The ECG score consisted of these findings showed modest predictive values represented by C-statistics that ranged from 0.632 to 760 during the follow-up and performed better in the early follow-up period. The ECG score independently predicted CV death after adjustment for relevant covariates in a multivariate model, and improved the predictive performance of the 10-year ASCVD risk estimator and a model of conventional risk factors including age, diabetes and current smoking. The combined ECG score (Harrell's C-index: 0.852, 95% confidence interval [CI], 0.828-0.876) composed of the ECG score and the conventional risk factors outperformed the 10-year ASCVD risk estimator (Harrell's C-index: 0.806; 95% CI, 0.780-0.833) and the model of the conventional risk factors (Harrell's C-index: 0.841, 95% CI, 0.817-0.865) and exhibited an excellent goodness of fit between the predicted and observed probabilities of CV death. CONCLUSIONS: The ECG score could be useful to predict CV death independently and may add value to the conventional CV risk estimators regarding the risk stratification of CV death in asymptomatic low-risk general populations.


The ECG score based on the Minnesota code classification can independently predict CV death and significantly improve the predictive power of the conventional CV risk estimators in asymptomatic low-risk general population.The combined ECG score comprised the ECG score, age and the presence of diabetes and current smoking predicted CV mortality more accurately than the conventional SV risk estimators.ECG may still be a viable CV risk stratification tool for population-based health screening projects.


Assuntos
Fibrilação Atrial , Doenças Cardiovasculares , Humanos , Estudos de Coortes , Estudos Prospectivos , Minnesota , Fatores de Risco , Eletrocardiografia , Doenças Cardiovasculares/diagnóstico , Prognóstico
3.
Vet Sci ; 10(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37888578

RESUMO

The present case describes multiple hepatic lipomas in a common hill mynah (Gracula religiosa). A 21-year-old female captive common hill mynah died without any notable clinical symptoms. An autopsy and histopathological examinations were conducted to determine the exact cause of death. On gross observation, the liver demonstrated a yellowish white surface color and multiple nodules indicating neoplastic lesions. Histopathological assessment found that the nodules purely comprised mature adipocytes. Furthermore, the liver exhibited an excessive accumulation of iron in hepatocytes and Kupffer cells and the infiltration of chronic inflammatory cells, suggesting iron storage disease (ISD). Based on the results, the present case was diagnosed as multiple hepatic lipomas with ISD. To the authors' best knowledge, multiple hepatic lipomas accompanying ISD lesions have not been reported previously. Hence, the present case is the first case report of hepatic multiple lipomas with ISD in veterinary medicine.

4.
Int Heart J ; 64(5): 832-838, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37704413

RESUMO

Comparison of the bleeding risk for long-term oral anticoagulation (OAC) in patients with nonvalvular atrial fibrillation (AF) with and without cancers has been inconsistent. This study aimed to clarify the differences in the bleeding risk in patients with AF with cancers and those without cancers during the long-term OAC.The CODE-AF prospective registry enrolled 5,902 consecutive patients treated for AF at 10 tertiary referral centers in Korea. Of the enrolled patients, 464 (7.8%) were diagnosed with cancers and were followed for all stroke and bleeding events (net composite events).The age, CHA2DS2-VASC, and HAS-BLED scores were similar between AF patients with and without cancers. Male population greatly comprised patients with AF with cancers. They were equally prescribed with direct OAC compared to those without cancers. The incidence rate for clinically relevant nonmajor (CRNM) bleeding events was higher in the patients with AF with cancers than in those without cancers (4.4 per 100 person-years versus 2.8 per 100 person-years, P = 0.023), and net composite events were also more frequent in patients with AF with cancers than in those without cancers (6.4 per 100 person-years versus 4.0 per 100 person-years, P = 0.004). Patients with AF with cancers showed a significantly higher rate of CRNM bleeding (hazard ratio [HR] 1.54, confidence interval [CI] 1.05-2.25, P = 0.002) than those without cancers.Based on the AF cohort, AF with cancers could face a significantly higher risk for CRNM bleeding events in the long-term OAC than those without cancers.

5.
J Ginseng Res ; 47(5): 638-644, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720569

RESUMO

Background: The anti-platelet activity of the saponin fraction of Korean Red Ginseng has been widely studied. The saponin fraction consists of the panaxadiol fraction (PDF) and panaxatriol fraction (PTF); however, their anti-platelet activity is yet to be compared. Our study aimed to investigate the potency of anti-platelet activity of PDF and PTF and to elucidate how well they retain their anti-platelet activity via different administration routes. Methods: For ex vivo studies, Sprague-Dawley rats were orally administered 250 mg/kg PDF and PTF for 7 consecutive days before blood collection via cardiac puncture. Platelet aggregation was conducted after isolation of the washed platelets. For in vitro studies, washed platelets were obtained from Sprague-Dawley rats. Collagen and adenosine diphosphate (ADP) were used to induce platelet aggregation. Collagen was used as an agonist for assaying adenosine triphosphate release, thromboxane B2, serotonin, cyclic adenosine monophosphate, and cyclic guanosine monophosphate (cGMP) release. Results: When treated ex vivo, PDF not only inhibited ADP and collagen-induced platelet aggregation, but also upregulated cGMP levels and reduced platelet adhesion to fibronectin. Furthermore, it also inhibited Akt phosphorylation induced by collagen treatment. Panaxadiol fraction did not exert any anti-platelet activity in vitro, whereas PTF exhibited potent anti-platelet activity, inhibiting ADP, collagen, and thrombin-induced platelet aggregation, but significantly elevated levels of cGMP. Conclusion: Our study showed that in vitro and ex vivo PDF and PTF treatments exhibited different potency levels, indicating possible metabolic conversions of ginsenosides, which altered the content of ginsenosides capable of preventing platelet aggregation.

6.
Am J Chin Med ; 51(5): 1309-1333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37385965

RESUMO

Prostate cancer (PC) is the second leading cause of cancer-related death among men. Treatment of PC becomes difficult after progression because PC that used to be androgen-dependent becomes androgen-independent prostate cancer (AIPC). Veratramine, an alkaloid extracted from the root of the Veratrum genus, has recently been reported to have anticancer effects that work against various cancers; however, its anticancer effects and the underlying mechanism of action in PC remain unknown. We investigated the anticancer effects of veratramine on AIPC using PC3 and DU145 cell lines, as well as a xenograft mouse model. The antitumor effects of veratramine were evaluated using the CCK-8, anchorage-independent colony formation, trans-well, wound healing assays, and flow cytometry in AIPC cell lines. Microarray and proteomics analyses were performed to investigate the differentially expressed genes and proteins induced by veratramine in AIPC cells. A xenograft mouse model was used to confirm the therapeutic response and in vivo efficacy of veratramine. Veratramine dose dependently reduced the proliferation of cancer cells both in vitro and in vivo. Moreover, veratramine treatment effectively suppressed the migration and invasion of PC cells. The immunoblot analysis revealed that veratramine significantly downregulated Cdk4/6 and cyclin D1 via the ATM/ATR and Akt pathways, both of which induce a DNA damage response that eventually leads to G1 phase arrest. In this study, we discovered that veratramine exerted antitumor effects on AIPC cells. We demonstrated that veratramine significantly inhibited the proliferation of cancer cells via G0/G1 phase arrest induced by the ATM/ATR and Akt pathways. These results suggest that veratramine is a promising natural therapeutic agent for AIPC.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Androgênios/farmacologia , Androgênios/uso terapêutico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Ciclo Celular , Linhagem Celular Tumoral , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/farmacologia
7.
J Vet Diagn Invest ; 35(4): 390-394, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37204064

RESUMO

An unknown-aged adult female wild boar (Sus scrofa) was brought to Kyungpook National University for postmortem examination. Gross examination revealed gallbladder agenesis. Histologically, the liver was cirrhotic and had intrahepatic cholelithiasis, the choleliths were yellow, brown, gray, and black, and had coffin-lid and pyramidal appearances. Fourier-transform infrared spectroscopy analysis revealed that the components were 80% struvite and 20% calcium oxalate monohydrate. Chronic inflammatory cell infiltration was observed, with hyperplastic hepatocellular nodules characterized by large nuclei, prominent nucleoli, and scant cytoplasm with frequent binucleation, surrounded by thick fibrous septa. The epithelium of intrahepatic bile ducts that contained choleliths had undergone gallbladder-like metaplasia, which might have been induced by chronic irritation from the stones or by the accompanying chronic bacterial infection that was observed in Gram stains.


Assuntos
Colelitíase , Doenças dos Suínos , Feminino , Animais , Suínos , Vesícula Biliar/patologia , Colelitíase/veterinária , Colelitíase/complicações , Colelitíase/diagnóstico , Ductos Biliares Intra-Hepáticos/patologia , Metaplasia/veterinária , Metaplasia/complicações , Metaplasia/patologia , Sus scrofa , Doenças dos Suínos/patologia
8.
Vet Med Sci ; 9(3): 1053-1061, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36748292

RESUMO

BACKGROUND: Most extramedullary plasmacytomas (EMPs) aresolitary and located in the head and neck region. They may also occur in the visceral parts of the body. OBJECTIVES: Here, we report a case of oral EMP followed by neoplastic plasma cell metastasis to both kidneys in a neutered male Pomeranian. METHODS: Oral plasmacytoma recurred 11 months aftersurgical removal of an oral mass and partial maxillectomy was performed. Eighteen months after partial maxillectomy, neoplastic masses were detected in both kidneys on computed tomography. The dog died 12 months after detection of bilateral kidney neoplasms. The resected neoplastic masses were routinely processed for histopathological observation and immunohistochemistry against pan-cytokeratin, desmin, CD3, and MUM-1. RESULTS: The recurred mass mainly consisted of well-differentiated plasma cells and contained a small portion of aggressive cells with malignant features. Monoclonal gammopathy was not observed on serumelectrophoresis performed to exclude multiple myeloma. The mass was composed of plasma cells with high nuclear pleomorphism and abundant mitotic figures. The neoplasm stained positive for MUM-1 with a more aggressive morphology than in oral EMP. CONCLUSION: Based on serum biomarker and pathological observations, a diagnosis of recurrence and metastasis of oral-to-renal EMP was established. To the best of our knowledge, metastasis of oral EMP into the bilateral kidneys, as described in the current case, has not been previously reported in dogs.


Assuntos
Doenças do Cão , Plasmocitoma , Masculino , Cães , Animais , Plasmocitoma/diagnóstico , Plasmocitoma/cirurgia , Plasmocitoma/veterinária , Boca/patologia , Tomografia Computadorizada por Raios X , Rim , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/cirurgia
9.
Vet Med (Praha) ; 68(1): 33-37, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38384992

RESUMO

Apocrine cystomatosis, also called epitrichial sweat gland cystomatosis, is a non-neoplastic condition characterised by multiple dilated cysts of sweat gland origin. Histopathologically, these cysts comprise two layers of cells: an inner layer of glandular epithelial cells and an outer layer of myoepithelial cells. A case of apocrine cystomatosis was admitted to a local hospital. The microscopic investigation revealed that some enlarged cysts showed the transition of glandular epithelial cells into a spindle, mesenchymal cell-like morphology. The epithelial-to-mesenchymal transition (EMT) has long been studied as a pathway for embryogenesis, organ development, and carcinogenesis. While various molecular factors, including cytokines and growth factors, are known to induce EMT, mechanical forces have also been proposed to initiate EMT. The present case describes a possible relationship between EMT occurring in a cystic condition and further pathological inspection.

10.
Biochem Biophys Res Commun ; 635: 99-107, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265288

RESUMO

Although several studies have focused on cancer diagnosis and therapy, prostate cancer (PC) remains an intractable disease. Androgen deprivation therapy (ADT), which is used to treat early stage PC can lead to the development of castration-resistant prostate cancer (CRPC), which is highly associated with androgen receptor (AR) mutations. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) is a chaperone that shuttles between the nucleus and the cytoplasm. Studies suggest that NOLC1 regulates PC progression; however, the underlying mechanisms remain unclear. Herein, we showed that NOLC1 knockdown suppresses PC cell proliferation by altering the signaling pathways and the expression of various proteins involved in DNA replication, amino acid metabolism, and RNA processing. Mechanistically, NOLC1 knockdown suppressed cell cycle progression by inhibiting AKT phosphorylation and ß-catenin accumulation. Finally, we showed that NOLC1 expression is higher in human PC than in human hyperplastic prostate tissues. Altogether, we demonstrated that NOLC1 knockdown suppresses the progression of both AR-positive and AR-negative PC cells by inducing changes in the expression of several genes leading to cell cycle arrest. Thus, NOLC1 might be a novel and promising therapeutic target for PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , beta Catenina , Masculino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fosforilação , Antagonistas de Androgênios , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo
11.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897881

RESUMO

Chaga mushroom (Inonotus obliquus) comprises polyphenolic compounds, triterpenoids, polysaccharides, and sterols. Among the triterpenoid components, inotodiol has been broadly examined because of its various biological activities. The purpose of this study is to examine inotodiol from a safety point of view and to present the potential possibilities of inotodiol for medical usage. From chaga mushroom extract, crude inotodiol (INO20) and pure inotodiol (INO95) were produced. Mice were treated with either INO20 or INO95 once daily using oral administration for repeated dose toxicity evaluation. Serum biochemistry parameters were analyzed, and the level of pro-inflammatory cytokines in the serum was quantified. In parallel, the effect of inotodiol on food allergic symptoms was investigated. Repeated administration of inotodiol did not show any mortality or abnormalities in organs. In food allergy studies, the symptoms of diarrhea were ameliorated by administration with INO95 and INO20. Furthermore, the level of MCPT-1 decreased by treatment with inotodiol. In this study, we demonstrated for the first time that inotodiol does not cause any detrimental effect by showing anti-allergic activities in vivo by inhibiting mast cell function. Our data highlight the potential to use inotodiol as an immune modulator for diseases related to inflammation.


Assuntos
Lanosterol , Triterpenos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Inonotus , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Camundongos
12.
Differentiation ; 125: 18-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349880

RESUMO

Mouse embryonic stem cells (mESCs) are characterized by self-renewal and pluripotency and can undergo differentiation into the three germ layers (ectoderm, mesoderm, and endoderm). Melanoma-associated antigen D1 (Maged1), which is expressed in all developing and adult tissues, modulates tissue regeneration and development. In the present study, we examined the expression and function of Maged1 in mESCs. Maged1 protein and mRNA expression increased during mESC differentiation. The pluripotency of mESCs was significantly reduced through extracellular signal-regulated kinase 1/2 phosphorylation upon knockdown of Maged1, and through G1 cell cycle arrest during cell division, resulting in significantly reduced mESC proliferation. Moreover, the diameter of the embryoid bodies was significantly reduced, accompanied by increased levels of ectodermal differentiation markers and decreased levels of mesodermal and endodermal differentiation markers. Maged1-knockdown mESC lines showed significantly reduced teratoma volumes and inhibition of teratoma formation in nude mice. Additionally, we observed increased ectodermal markers but decreased mesodermal and endodermal markers in teratoma tissues. These findings show that Maged1 affects mESC pluripotency, proliferation, cell cycle, and differentiation, thereby contributing to our understanding of the basic molecular biological mechanisms and potential roles of Maged1 as a regulator of various mESC properties.


Assuntos
Células-Tronco Embrionárias Murinas , Animais , Antígenos de Diferenciação/metabolismo , Ciclo Celular/genética , Morte Celular , Diferenciação Celular/genética , Divisão Celular , Camundongos , Camundongos Nus , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia
13.
J Cell Biochem ; 123(3): 547-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958137

RESUMO

Mouse embryonic stem cells (mESCs) are a widely used model for their diverse availability in studying early embryonic development and their application in regenerative treatment of various intractable diseases. Transient receptor potential melastatin 7 (Trpm7) regulates Ca2+ as a nonselective ion channel and is essential for early embryonic development; however, the precise role of Trpm7 in mESCs has not been clearly elucidated. In this study, we showed that the inhibition of Trpm7 affects the pluripotency and self-renewal of mESCs. We found that short hairpin RNA (shRNA)-mediated suppression of Trpm7 resulted in decreased expression of transcriptional regulators, Oct4 and Sox2, which maintain stemness in mESCs. In addition, Trpm7 knockdown led to alterations in the basic properties of mESCs, such as decreased proliferation, cell cycle arrest at the G0/G1 phase, and increased apoptosis. Furthermore, embryoid body (EB) formation and teratoma formation assays revealed abnormal regulation of differentiation due to Trpm7 knockdown, including the smaller size of EBs, elevated ectodermal differentiation, and diminished endodermal and mesodermal differentiation. We found that EB Day 7 samples displayed decreased intracellular Ca2+ levels compared to those of the scrambled group. Finally, we identified that these alterations induced by Trpm7 knockdown occurred due to decreased phosphorylation of mechanistic target of rapamycin (mTOR) and subsequent activation of extracellular signal-regulated kinase (ERK) in mESCs. Our findings suggest that Trpm7 could be a novel regulator for maintaining stemness and modulating the differentiation of mESCs.


Assuntos
Células-Tronco Embrionárias Murinas , Canais de Cátion TRPM , Animais , Diferenciação Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , RNA Interferente Pequeno/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
14.
Life Sci ; 288: 120170, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826438

RESUMO

AIMS: Antitumor effects of veratramine in prostate and liver cancers has been investigated, but it is still unclear whether veratramine can be used as an effective therapeutic agent for glioma. The aim of this study was to evaluate the potential pharmacological mechanism of veratramine in glioma. MAIN METHODS: Using four types of human glioblastoma cell lines, including A172, HS-683, T98G, and U-373-MG the dose-dependent antitumor effect of veratramine was evaluated. The cytotoxicity and cell proliferation were examined by CCK-8, and cell proliferation was further confirmed by anchorage-independent colony formation assay. The cell cycle distribution and apoptotic rate was assessed by flow cytometry, and apoptosis was further evaluated by apoptosis assay. The migration and invasiveness capacity were analyzed by using transwell. Protein and mRNA levels of related factors were determined by western blotting and RT-qPCR, respectively. KEY FINDINGS: Veratramine markedly induced apoptosis, suppressed the cell proliferation via the cell cycle G0/G1 phase arrest, and reduced the capacity for the migration and invasion in human glioblastoma multiforme cell lines. Moreover, veratramine was sufficient to affect the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin signaling pathway and its downstream Mdm2/p53/p21 pathway in human glioblastoma cell lines. SIGNIFICANCE: Antitumor effects of veratramine in suppression of glioma progression was mediated by the regulation of PI3K/Akt/mTOR and Mdm2/p53/p21 signaling pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alcaloides de Veratrum/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Exp Clin Cancer Res ; 40(1): 291, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537073

RESUMO

BACKGROUND: The progression of prostate cancer (PC) to the highly aggressive metastatic castration-resistant prostate cancer (mCRPC) or neuroendocrine prostate cancer (NEPC) is a fatal condition and the underlying molecular mechanisms are poorly understood. Here, we identified the novel transcriptional factor ZNF507 as a key mediator in the progression of PC to an aggressive state. METHODS: We analyzed ZNF507 expression in the data from various human PC database and high-grade PC patient samples. By establishment of ZNF507 knockdown and overexpression human PC cell lines, we assessed in vitro PC phenotype changes including cell proliferation, survival, migration and invasion. By performing microarray with ZNF507 knockdown PC cells, we profiled the gene clusters affected by ZNF507 knockdown. Moreover, ZNF507 regulated key signal was evaluated by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Finally, we performed xenograft and in vivo metastasis assay to confirm the effect of ZNF507 knockdown in PC cells. RESULTS: We found that ZNF507 expression was increased, particularly in the highly graded PC. ZNF507 was also found to be associated with metastatic PC of a high grade. Loss- or gain-of-function-based analysis revealed that ZNF507 promotes the growth, survival, proliferation, and metastatic properties of PC (e.g., epithelial-mesenchymal transition) by upregulating TGF-ß signaling. Profiling of gene clusters affected by ZNF507 knockdown revealed that ZNF507 positively regulated the transcription of TGFBR1, MAP3K8, and FURIN, which in turn promoted the progression of PC to highly metastatic and aggressive state. CONCLUSIONS: Our findings suggest that ZNF507 is a novel key regulator of TGF-ß signaling in the progression of malignant PC and could be a promising target for studying the development of advanced metastatic PCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose/genética , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Progressão da Doença , Suscetibilidade a Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , Modelos Biológicos , Prognóstico , Neoplasias da Próstata/etiologia
16.
In Vivo ; 35(3): 1473-1483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910825

RESUMO

BACKGROUND/AIM: The pathological role of vascular endothelial growth factor receptor 2 (VEGFR-2) in chronic liver injury and liver regeneration is not fully understood. This study analysed the role of VEGFR-2 in liver fibrosis and its regeneration process. MATERIALS AND METHODS: We administered intraperitoneally 50 mg/kg to 300 mg/kg thioacetamide (TAA) to 9-week-old male mice for 17 weeks. We measured levels of VEGFR-2 protein and identified the location of cells that specifically express VEGFR-2. RESULTS: VEGFR-2 is rarely expressed in normal hepatocytes. However, high VEGFR-2 expression in liver sinusoidal endothelial cells was noted in the TAA group. Conversely, the group that experienced regeneration from liver fibrosis showed significantly higher VEGFR-2 expression in the nucleus of hepatocytes compared to the other groups. CONCLUSION: VEGFR-2 plays a pivotal role in the nucleus of hepatocytes during liver regeneration and VEGFR-2 may be closely related to cell division. Therefore, VEGFR-2 may be a new therapeutic target for liver regeneration.


Assuntos
Regeneração Hepática , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Proliferação de Células , Hepatócitos , Fígado , Masculino , Camundongos , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652881

RESUMO

Senescence marker protein 30 (SMP30) is a cell survival factor playing an important role in vitamin C synthesis and antiapoptosis. Moreover, its cytoprotective role suggests a possibility to be related to cancer cell survival. Mammary carcinoma is a common cancer in both humans and animals. Because of its histopathological diversity, especially in the early stage, histopathological diagnosis may be complicated; therefore, a diagnostic marker is helpful for confirmation. The present study analyzed the expression pattern of SMP30 in mammary carcinoma in humans, dogs, and cats. Immunohistochemistry, immunofluorescence, and western blot analysis were used to investigate SMP30 expression patterns. The expression was specifically observed in neoplastic glandular epithelial cells. The expression increased with the malignancy of glandular epithelial cells with a highly proliferative status. However, SMP30 expression was low in normal mammary gland tissues or well-differentiated adenoma tissues. The patterns were consistently reproduced in canine primary mammary carcinoma cells and MCF-7 and MDA-MB-231 human carcinoma cell lines. This study provides useful information to understand SMP30 expression in various stages of mammary carcinoma and to suggest its utility as a pan-species diagnostic marker, thereby helping to establish strategies for diagnosing mammary carcinoma in several species.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio/análise , Doenças do Gato/patologia , Doenças do Cão/patologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Neoplasias Mamárias Animais/patologia , Animais , Biomarcadores Tumorais/análise , Mama/patologia , Neoplasias da Mama/diagnóstico , Doenças do Gato/diagnóstico , Gatos , Linhagem Celular Tumoral , Doenças do Cão/diagnóstico , Cães , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Animais/diagnóstico , Prognóstico
18.
Cells ; 10(2)2021 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572505

RESUMO

Nogo-A (Rtn 4A), a member of the reticulon 4 (Rtn4) protein family, is a neurite outgrowth inhibitor protein that is primarily expressed in the central nervous system (CNS). However, previous studies revealed that Nogo-A was upregulated in skeletal muscles of Amyotrophic lateral sclerosis (ALS) patients. Additionally, experiments showed that endoplasmic reticulum (ER) stress marker, C/EBP homologous protein (CHOP), was upregulated in gastrocnemius muscle of a murine model of ALS. We therefore hypothesized that Nogo-A might relate to skeletal muscle diseases. According to our knocking down and overexpression results in muscle cell line (C2C12), we have found that upregulation of Nogo-A resulted in upregulation of CHOP, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while downregulation of Nogo-A led to downregulation of CHOP, IL-6 and TNF-α. Immunofluorescence results showed that Nogo-A and CHOP were expressed by myofibers as well as tissue macrophages. Since resident macrophages share similar functions as bone marrow-derived macrophages (BMDM), we therefore, isolated macrophages from bone marrow to study the role of Nogo-A in activation of these cells. Lipopolysaccharide (LPS)-stimulated BMDM in Nogo-KO mice showed low mRNA expression of CHOP, IL-6 and TNF-α compared to BMDM in wild type (WT) mice. Interestingly, Nogo knockout (KO) BMDM exhibited lower migratory activity and phagocytic ability compared with WT BMDM after LPS treatment. In addition, mice experiments data revealed that upregulation of Nogo-A in notexin- and tunicamycin-treated muscles was associated with upregulation of CHOP, IL-6 and TNF-α in WT group, while in Nogo-KO group resulted in low expression level of CHOP, IL-6 and TNF-α. Furthermore, upregulation of Nogo-A in dystrophin-deficient (mdx) murine model, myopathy and Duchenne muscle dystrophy (DMD) clinical biopsies was associated with upregulation of CHOP, IL-6 and TNF-α. To the best of our knowledge, this is the first study to demonstrate Nogo-A as a regulator of inflammation in diseased muscle and bone marrow macrophages and that deletion of Nogo-A alleviates muscle inflammation and it can be utilized as a therapeutic target for improving muscle diseases.


Assuntos
Redes Reguladoras de Genes/genética , Macrófagos/metabolismo , Células Musculares/metabolismo , Proteínas Nogo/metabolismo , Animais , Humanos , Camundongos
19.
Int J Stem Cells ; 14(2): 150-167, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33377459

RESUMO

The therapeutic effects of mesenchymal stem cells (MSCs) in musculoskeletal diseases (MSDs) have been verified in many human and animal studies. Although some tissues contain MSCs, the number of cells harvested from those tissues and rate of proliferation in vitro are not enough for continuous transplantation. In order to produce and maintain stable MSCs, many attempts are made to induce differentiation from pluripotent stem cells (iPSCs) into MSCs. In particular, it is also known that the paracrine action of stem cell-secreted factors could promote the regeneration and differentiation of target cells in damaged tissue. MicroRNAs (miRNAs), one of the secreted factors, are small non-coding RNAs that regulate the translation of a gene. It is known that miRNAs help communication between stem cells and their surrounding niches through exosomes to regulate the proliferation and differentiation of stem cells. While studies have so far been underway targeting therapeutic miRNAs of MSDs, studies on specific miRNAs secreted from MSCs are still minimal. Hence, our ultimate goal is to obtain sufficient amounts of exosomes from iPSC-MSCs and develop them into therapeutic agents, furthermore to select specific miRNAs and provide safe cell-free clinical setting as a cell-free status with purpose of delivering them to target cells. This review article focuses on stem cell therapy on MSDs, specific microRNAs regulating MSDs and updates on novel approaches.

20.
Cell Biochem Funct ; 39(1): 67-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32529664

RESUMO

Mouse embryonic stem cells (mESCs) are pluripotent cells that possess the ability to self-renew and differentiate into three germ layers. Owing to these characteristics, mESCs act as important models for stem cell research and are being used in many clinical applications. Among the many cathepsins, cathepsin A (Ctsa), a serine protease, affects the function and properties of stem cells. However, studies on the role of Ctsa in stem cells are limited. Here, we observed a significant increase in Ctsa expression during mESC differentiation at protein levels. Furthermore, we established Ctsa knockdown mESCs. Ctsa knockdown led to Erk1/2 phosphorylation, which in turn inhibited the pluripotency of mESCs and induced G2/M cell cycle arrest to inhibit mESC proliferation. The knockdown also induced abnormal differentiation in mESCs and aberrant expression of differentiation markers. Furthermore, we identified inhibition of teratoma formation in nude mice. Our results suggested that Ctsa affects mESC pluripotency, proliferation, cell cycle and differentiation, and highlighted the potential of Ctsa to act as a core factor that can regulate various mESC properties. SIGNIFICANCE OF THE STUDY: Our results indicate that cathepsin A (Ctsa) affects the properties of mESCs. Inhibition of Ctsa resulted in a decrease in the pluripotency of mouse embryonic stem cells (mESCs). Further, Ctsa suppression resulted in decreased proliferation via cell cycle arrest. Moreover, Ctsa inhibition reduced differentiation abilities and formation of teratoma in mESCs. Our results demonstrated that Ctsa is an important factor controlling mESC abilities.


Assuntos
Catepsina A/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Células-Tronco Embrionárias Murinas/enzimologia , Animais , Catepsina A/genética , Linhagem Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Pontos de Checagem da Fase M do Ciclo Celular/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA