Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Ther Nucleic Acids ; 35(3): 102270, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39171141

RESUMO

Recombinant adenovirus (rAdV) vector is the most promising vehicle to deliver an exogenous gene into target cells and is preferred for gene therapy. Exogenous gene expression from rAdV is often too inefficient to induce phenotypic changes and the amount of administered rAdV must be very high to achieve a therapeutic dose. However, it is often hampered because a high dose of rAdV is likely to induce cytotoxicity by activating immune responses. nc886, a 102-nucleotide non-coding RNA that is transcribed by RNA polymerase III, acts as an immune suppressor and a facilitator of AdV entry into the nucleus. Therefore, in this study, we have constructed an rAdV expressing nc886 (AdV:nc886) to explore whether AdV:nc886 overcomes the aforementioned drawbacks of conventional rAdV vectors. When infected into mouse cell lines and mice, AdV:nc886 expresses a sufficient amount of nc886, which suppresses the induction of interferon-stimulated genes and apoptotic pathways triggered by AdV infection. As a result, AdV:nc886 is less cytotoxic and produces more rAdV-delivered gene products, compared with the parental rAdV vector lacking nc886. In conclusion, this study demonstrates that the nc886-expressing rAdV could become a superior gene delivery vehicle with greater safety and higher efficiency for in vivo gene therapy.

2.
Clin Mol Hepatol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39048522

RESUMO

Background/Aims: Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD. Methods: Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction-associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing. Results: Methylome and transcriptome analyses of liver biopsies revealed significant (P <0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA, and SERPING1, as well as hypomethylation (P <0.0005) and upregulation (P <0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data. Conclusions: Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.

3.
Cancer Res ; 84(9): 1491-1503, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607364

RESUMO

Never-smoker lung adenocarcinoma (NSLA) is prevalent in Asian populations, particularly in women. EGFR mutations and anaplastic lymphoma kinase (ALK) fusions are major genetic alterations observed in NSLA, and NSLA with these alterations have been well studied and can be treated with targeted therapies. To provide insights into the molecular profile of NSLA without EGFR and ALK alterations (NENA), we selected 141 NSLA tissues and performed proteogenomic characterization, including whole genome sequencing (WGS), transcriptomic, methylation EPIC array, total proteomic, and phosphoproteomic analyses. Forty patients with NSLA harboring EGFR and ALK alterations and seven patients with NENA with microsatellite instability were excluded. Genome analysis revealed that TP53 (25%), KRAS (22%), and SETD2 (11%) mutations and ROS1 fusions (14%) were the most frequent genetic alterations in NENA patients. Proteogenomic impact analysis revealed that STK11 and ERBB2 somatic mutations had broad effects on cancer-associated genes in NENA. DNA copy number alteration analysis identified 22 prognostic proteins that influenced transcriptomic and proteomic changes. Gene set enrichment analysis revealed estrogen signaling as the key pathway activated in NENA. Increased estrogen signaling was associated with proteogenomic alterations, such as copy number deletions in chromosomes 14 and 21, STK11 mutation, and DNA hypomethylation of LLGL2 and ST14. Finally, saracatinib, an Src inhibitor, was identified as a potential drug for targeting activated estrogen signaling in NENA and was experimentally validated in vitro. Collectively, this study enhanced our understanding of NENA NSLA by elucidating the proteogenomic landscape and proposed saracatinib as a potential treatment for this patient population that lacks effective targeted therapies. SIGNIFICANCE: The proteogenomic landscape in never-smoker lung cancer without known driver mutations reveals prognostic proteins and enhanced estrogen signaling that can be targeted as a potential therapeutic strategy to improve patient outcomes.


Assuntos
Adenocarcinoma de Pulmão , Quinase do Linfoma Anaplásico , Receptores ErbB , Estrogênios , Neoplasias Pulmonares , Mutação , Proteogenômica , Transdução de Sinais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Variações do Número de Cópias de DNA , Receptores ErbB/genética , Receptores ErbB/metabolismo , Estrogênios/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , não Fumantes/estatística & dados numéricos , Prognóstico , Proteogenômica/métodos , Transdução de Sinais/genética
4.
Nat Commun ; 15(1): 1163, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331894

RESUMO

The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.


Assuntos
Multiômica , Neoplasias da Glândula Tireoide , Humanos , Glicina Hidroximetiltransferase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Redes e Vias Metabólicas/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
5.
Exp Mol Med ; 56(1): 235-249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253797

RESUMO

Cytochrome b5 reductase 3 (CYB5R3) is involved in various cellular metabolic processes, including fatty acid synthesis and drug metabolism. However, the role of CYB5R3 in cancer development remains poorly understood. Here, we show that CYB5R3 expression is downregulated in human lung cancer cell lines and tissues. Adenoviral overexpression of CYB5R3 suppresses lung cancer cell growth in vitro and in vivo. However, CYB5R3 deficiency promotes tumorigenesis and metastasis in mouse models. Transcriptome analysis revealed that apoptosis- and endoplasmic reticulum (ER) stress-related genes are upregulated in CYB5R3-overexpressing lung cancer cells. Metabolomic analysis revealed that CYB5R3 overexpression increased the production of nicotinamide adenine dinucleotide (NAD+) and oxidized glutathione (GSSG). Ectopic CYB5R3 is mainly localized in the ER, where CYB5R3-dependent ER stress signaling is induced via activation of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme 1 alpha (IRE1α). Moreover, NAD+ activates poly (ADP-ribose) polymerase16 (PARP16), an ER-resident protein, to promote ADP-ribosylation of PERK and IRE1α and induce ER stress. In addition, CYB5R3 induces the generation of reactive oxygen species and caspase-9-dependent intrinsic cell death. Our findings highlight the importance of CYB5R3 as a tumor suppressor for the development of CYB5R3-based therapeutics for lung cancer.


Assuntos
Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/genética , Citocromo-B(5) Redutase/metabolismo , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
6.
BMC Microbiol ; 23(1): 336, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951857

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a multifactorial chronic inflammatory disease resulting from dysregulation of the mucosal immune response and gut microbiota. Crohn's disease (CD) and ulcerative colitis (UC) are difficult to distinguish, and differential diagnosis is essential for establishing a long-term treatment plan for patients. Furthermore, the abundance of mucosal bacteria is associated with the severity of the disease. This study aimed to differentiate and diagnose these two diseases using the microbiome and identify specific biomarkers associated with disease activity. RESULTS: Differences in the abundance and composition of the microbiome between IBD patients and healthy controls (HC) were observed. Compared to HC, the diversity of the gut microbiome in patients with IBD decreased; the diversity of the gut microbiome in patients with CD was significantly lower. Sixty-eight microbiota members (28 for CD and 40 for UC) associated with these diseases were identified. Additionally, as the disease progressed through different stages, the diversity of the bacteria decreased. The abundances of Alistipes shahii and Pseudodesulfovibrio aespoeensis were negatively correlated with the severity of CD, whereas the abundance of Polynucleobacter wianus was positively correlated. The severity of UC was negatively correlated with the abundance of A. shahii, Porphyromonas asaccharolytica and Akkermansia muciniphilla, while it was positively correlated with the abundance of Pantoea candidatus pantoea carbekii. A regularized logistic regression model was used for the differential diagnosis of the two diseases. The area under the curve (AUC) was used to examine the performance of the model. The model discriminated UC and CD at an AUC of 0.873 (train set), 0.778 (test set), and 0.633 (validation set) and an area under the precision-recall curve (PRAUC) of 0.888 (train set), 0.806 (test set), and 0.474 (validation set). CONCLUSIONS: Based on fecal whole-metagenome shotgun (WMS) sequencing, CD and UC were diagnosed using a machine-learning predictive model. Microbiome biomarkers associated with disease activity (UC and CD) are also proposed.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/terapia , Doença de Crohn/diagnóstico , Doença de Crohn/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Bactérias/genética , Biomarcadores
7.
Endocr Pathol ; 34(3): 311-322, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37658903

RESUMO

Non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) is a low-risk thyroid tumor with a favorable prognosis. Nonetheless, differentiating NIFTP from other thyroid tumors remains challenging, necessitating reliable diagnostic markers. This study is aimed at discovering NIFTP-specific mRNA markers through RNA sequencing analysis of thyroid tumor tissues. We performed mRNA expression profiling for 74 fresh frozen thyroid tissue samples, including NIFTP and benign and malignant follicular-cell-derived tumors. NIFTP/malignant tumors showed 255 downregulated genes and 737 upregulated genes compared to benign tumors. Venn diagram analysis revealed 19 significantly upregulated and 7 downregulated mRNAs in NIFTP. Akaike information criterion analysis allowed us to select OCLN, ZNF423, LYG1, and AQP5 mRNA markers. We subsequently developed a predictive model based on logistic regression analysis using these four mRNAs, which we validated in independent samples (n = 90) using a qRT-PCR assay. This model demonstrated high accuracy in predicting NIFTP in discovery dataset (AUC (area under the receiver operating characteristic) = 0.960) and the validation dataset (AUC = 0.757). Our results suggest that OCLN, ZNF423, LYG1, and AQP5 mRNA markers might serve as reliable molecular markers for identifying NIFTP among other thyroid tumors, ultimately aiding in accurate diagnosis and management of NIFTP patients.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Hidrolases , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
8.
Genomics Inform ; 21(1): e11, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37037469

RESUMO

Breast cancer is the most common cancer worldwide, and advanced breast cancer with metastases is incurable mainly with currently available therapies. Therefore, it is essential to understand molecular characteristics during the progression of breast carcinogenesis. Here, we report a dataset of whole genomes from the human mammary epithelial cell system derived from a reduction mammoplasty specimen. This system comprises pre-stasis 184D cells, considered normal, and seven cell lines along cancer progression series that are immortalized or additionally acquired anchorage-independent growth. Our analysis of the whole-genome sequencing (WGS) data indicates that those seven cancer progression series cells have somatic mutations whose number ranges from 8,393 to 39,564 (with an average of 30,591) compared to 184D cells. These WGS data and our mutation analysis will provide helpful information to identify driver mutations and elucidate molecular mechanisms for breast carcinogenesis.

9.
Cancer Med ; 12(8): 10091-10104, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36748835

RESUMO

BACKGROUND: Early-onset colorectal cancer (EOCRC) has been increasing in incidence worldwide but its genomic pathogenesis is mostly undetermined. This study aimed to identify robust EOCRC-specific gene expression patterns in non-familial adenomatous polyposis (FAP) and non-hereditary nonpolyposis colorectal cancer syndrome (HNPCC) EOCRC. METHOD: We first performed gene expression profiling analysis using RNA sequencing of discovery cohort comprised of 49 EOCRC (age <50) and 50 late-onset colorectal cancer (LOCRC) (age >70) specimens. To obtain robust gene expression data from this analysis, we validated differentially expressed genes (DEGs) through TCGA cohort (EOCRC:59 samples, LOCRC:229 samples) and our validation cohort (EOCRC:72 samples, LOCRC:43 samples) using real-time RT-PCR. After the validation of DEGs, we validated the selected gene at protein levels using Western blotting. To identify whether genomic methylation regulates the expression of a particular gene, we selected methylation sites using The Cancer Genome Atlas (TCGA) datasets and validated them by pyrosequencing in our validation cohort. RESULTS: The EOCRC patients included in this study had significantly more prominent family history of cancer than the LOCRC patients (23 [46.9%] vs. 13 [26%], p = 0.050). Alanyl aminopeptidase (ANPEP) was significantly downregulated in the EOCRC tissues (FC = 1.78, p = 0.0007) and was also commonly downregulated in the TCGA cohort (FC = -1.08, p = 0.0021). Moreover, the ANPEP mRNA and protein expression levels were significantly downregulated in the EOCRC tissues of our validation cohort (p = 0.037 and 0.027). In comparisons of the normal and tumor tissues in public datasets, the ANPEP level was significantly lower in the tumor tissue in the TCGA dataset (p < 2.2 × 10-16 ) and GSE196006 dataset (p = 0.0005). Furthermore, the ANPEP expression level did not show a decreasing tendency at a young age in the normal colon tissue of the GTEx dataset. Lastly, the hypermethylation of cg26222247 in ANPEP was identified to be weakly associated with reduced ANPEP expression in our EOCRC cohort. CONCLUSION: The reduced expression of ANPEP was identified as a novel biomarker of non-FAP and non-HNPCC EOCRC.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Antígenos CD13 , Polipose Adenomatosa do Colo/diagnóstico , Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Biomarcadores
10.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551669

RESUMO

The loss-of-function variants are thought to be associated with inflammation in the stomach. We here aimed to evaluate the extent and role of methylation at the SSTR2 promoter in inflammation and gastric tumor formation. A whole-genome bisulfite sequencing analysis revealed that the SSTR2 promoter was significantly hypermethylated in gastric tumors, dysplasia, and intestinal metaplasia compared to non-tumor tissues from patients with gastric cancer. Using public data, we confirmed SSTR2 promoter methylation in primary gastric tumors and intestinal metaplasia, and even aged gastric mucosae infected with Helicobacter pylori, suggesting that aberrant methylation is initiated in normal gastric mucosa. The loss-of-function of SSTR2 in SNU638 cell-induced cell proliferation in vitro, while stable transfection of SSTR2 in AGS and MKN74 cells inhibited cell proliferation and tumorigenesis in vitro and in vivo. As revealed by a comparison of target genes differentially expressed in these cells with hallmark molecular signatures, inflammation-related pathways were distinctly induced in SSTR2-KO SNU638 cell. By contrast, inflammation-related pathways were inhibited in AGS and MKN74 cells ectopically expressing SSTR2. Collectively, we propose that SSTR2 silencing upon promoter methylation is initiated in aged gastric mucosae infected with H. pylori and promotes the establishment of an inflammatory microenvironment via the intrinsic pathway. These findings provide novel insights into the initiation of gastric carcinogenesis.

11.
Cancers (Basel) ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139505

RESUMO

Breast cancer is the most common malignant tumor in women. The ATPase family AAA domain-containing protein 2 (ATAD2) contains an ATPase domain and a bromodomain, and is abnormally expressed in various human cancers, including breast cancer. However, the molecular mechanisms underlying the regulation of ATAD2 expression in breast cancer remain unclear. This study aimed to investigate the expression and function of ATAD2 in breast cancer. We found that ATAD2 was highly expressed in human breast cancer tissues and cell lines. ATAD2 depletion via RNA interference inhibited the proliferation, migration, and invasive ability of the SKBR3 and T47D breast cancer cell lines. Furthermore, Western blot analysis and luciferase assay results revealed that ATAD2 is a putative target of miR-302. Transfection with miR-302 mimics markedly reduced cell migration and invasion. These inhibitory effects of miR-302 were restored by ATAD2 overexpression. Moreover, miR-302 overexpression in SKBR3 and T47D cells suppressed tumor growth in the xenograft mouse model. However, ATAD2 overexpression rescued the decreased tumor growth seen after miR-302 overexpression. Our findings indicate that miR-302 plays a prominent role in inhibiting the cancer cell behavior associated with tumor progression by targeting ATAD2, and could thus be a valuable target for breast cancer therapy.

12.
Clin Exp Otorhinolaryngol ; 15(2): 183-193, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35255661

RESUMO

OBJECTIVES: Thyroid cancer is the most common endocrine tumor, with rapidly increasing incidence worldwide. However, its transcriptomic characteristics associated with immunological signatures, driver fusions, and recurrence markers remain unclear. We aimed to investigate the transcriptomic characteristics of advanced papillary thyroid cancer. METHODS: This study included 282 papillary thyroid cancer tumor samples and 155 normal samples from Chungnam National University Hospital and Seoul National University Hospital. Transcriptomic quantification was determined by high-throughput RNA sequencing. We investigated the associations of clinical parameters and molecular signatures using RNA sequencing. We validated predictive biomarkers using the Cancer Genome Atlas database. RESULTS: Through a comparison of differentially expressed genes, gene sets, and pathways in papillary thyroid cancer compared to normal tumor-adjacent tissue, we found increased immune signaling associated with cytokines or T cells and decreased thyroid hormone synthetic pathways. In addition, patients with recurrence presented increased CD8+ T-cell and Th1-cell signatures. Interestingly, we found differentially overexpressed genes related to immune-escape signaling such as CTLA4, IDO1, LAG3, and PDCD1 in advanced papillary thyroid cancer with a low thyroid differentiation score. Fusion analysis showed that the PI3K and mitogen-activated protein kinase (MAPK) signaling pathways were regulated differently according to the RET fusion partner genes (CCDC6 or NCOA4). Finally, we identified HOXD9 as a novel molecular biomarker that predicts the recurrence of thyroid cancer in addition to known risk factors (tumor size, lymph node metastasis, and extrathyroidal extension). CONCLUSION: We identified a high association with immune-escape signaling in the immune-hot group with aggressive clinical characteristics among Korean thyroid cancer patients. Moreover, RET fusion differentially regulated PI3K and MAPK signaling depending on the partner gene of RET, and HOXD9 was found to be a recurrence marker for advanced papillary thyroid cancer.

13.
Mol Ther Oncolytics ; 24: 683-694, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35284627

RESUMO

Elucidation of the interplay between viruses and host cells is crucial for taming viruses to benefit human health. Cancer therapy using adenovirus, called oncolytic virotherapy, is a promising treatment option but is not robust in all patients. In addition, inefficient replication of human adenovirus in mouse hampered the development of an in vivo model for preclinical evaluation of therapeutically engineered adenovirus. nc886 is a human non-coding RNA that suppresses Protein Kinase R (PKR), an antiviral protein. In this study, we have found that nc886 greatly promotes adenoviral gene expression and replication. Remarkably, the stimulatory effect of nc886 is not dependent on its function to inhibit PKR. Rather, nc886 facilitates the nuclear entry of adenovirus via modulating the kinesin pathway. nc886 is not conserved in mouse and, when xenogeneically expressed in mouse cells, promotes adenovirus replication. Our investigation has discovered a novel mechanism of how a host ncRNA plays a pro-adenoviral role. Given that nc886 expression is silenced in a subset of cancer cells, our study highlights that oncolytic virotherapy might be inefficient in those cells. Furthermore, our findings open future possibilities of harnessing nc886 to improve the efficacy of oncolytic adenovirus and to construct nc886-expressing transgenic mice as an animal model.

14.
Diagnostics (Basel) ; 11(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34943601

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) can be difficult to differentiate. As differential diagnosis is important in establishing a long-term treatment plan for patients, we aimed to develop a machine learning model for the differential diagnosis of the two diseases using RNA sequencing (RNA-seq) data from endoscopic biopsy tissue from patients with inflammatory bowel disease (n = 127; CD, 94; UC, 33). Biopsy samples were taken from inflammatory lesions or normal tissues. The RNA-seq dataset was processed via mapping to the human reference genome (GRCh38) and quantifying the corresponding gene models that comprised 19,596 protein-coding genes. An unsupervised learning model showed distinct clusters of four classes: CD inflammatory, CD normal, UC inflammatory, and UC normal. A supervised learning model based on partial least squares discriminant analysis was able to distinguish inflammatory CD from inflammatory UC after pruning the strong classifiers of normal CD vs. normal UC. The error rate was minimal and affected only two components: 20 and 50 genes for the first and second components, respectively. The corresponding overall error rate was 0.147. RNA-seq analysis of tissue and the two components revealed in this study may be helpful for distinguishing CD from UC.

15.
Genes Genomics ; 43(7): 713-724, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864614

RESUMO

BACKGROUND: Illumina next generation sequencing (NGS) systems are the major sequencing platform in worldwide next-generation sequencing market. On the other hand, MGI Tech launched a series of new NGS equipment that promises to deliver high-quality sequencing data faster and at lower prices than Illumina's sequencing instruments. OBJECTIVE: In this study, we compared the performance of the two platform's major sequencing instruments-Illumina's NovaSeq 6000 and MGI's MGISEQ-2000 and DNBSEQ-T7-to test whether the MGISEQ-2000 and DNBSEQ-T7 sequencing instruments are also suitable for whole genome sequencing. METHODS: We sequenced two pairs of normal and tumor tissues from Korean lung cancer patients using the three platforms. Then, we called single nucleotide variants (SNVs) and insertion and deletion (indels) for somatic and germline variants to compare the performance among the three platforms. RESULTS: In quality control analysis, all of the three platforms showed high-quality scores and deep coverages. Comparison among the three platforms revealed that MGISEQ-2000 is most concordant with NovaSeq 6000 for germline SNVs and indels, and DNBSEQ-T7 is most concordant with NovaSeq 6000 for somatic SNVs and indels. CONCLUSIONS: These results suggest that the performances of the MGISEQ-2000 and DNBSEQ-T7 platforms are comparable to that of the Illumina NovaSeq 6000 platform and support the potential applicability of the MGISEQ-2000 and DNBSEQ-T7 platforms in actual genome analysis fields.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento Completo do Genoma/métodos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Neoplasias Pulmonares/genética , Valores de Referência , Sequenciamento Completo do Genoma/normas
16.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670458

RESUMO

Interferons (IFNs) are a crucial component in the innate immune response. Especially the IFN-ß signaling operates in most cell types and plays a key role in the first line of defense upon pathogen intrusion. The induction of IFN-ß should be tightly controlled, because its hyperactivation can lead to tissue damage or autoimmune diseases. Activation of the IFN-ß promoter needs Interferon Regulatory Factor 3 (IRF3), together with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Activator Protein 1 (AP-1). Here we report that a human noncoding RNA, nc886, is a novel suppressor for the IFN-ß signaling and inflammation. Upon treatment with several pathogen-associated molecular patterns and viruses, nc886 suppresses the activation of IRF3 and also inhibits NF-κB and AP-1 via inhibiting Protein Kinase R (PKR). These events lead to decreased expression of IFN-ß and resultantly IFN-stimulated genes. nc886's role might be to restrict the IFN-ß signaling from hyperactivation. Since nc886 expression is regulated by epigenetic and environmental factors, nc886 might explain why innate immune responses to pathogens are variable depending on biological settings.


Assuntos
Regulação da Expressão Gênica/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , RNA não Traduzido/imunologia , Animais , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , RNA não Traduzido/genética , Transdução de Sinais/imunologia , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Vírus/imunologia , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
17.
Oncol Rep ; 45(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649810

RESUMO

Pathological changes in the epigenetic landscape of chromatin are hallmarks of cancer. Our previous study showed that global methylation of promoters may increase or decrease during the transition from gastric mucosa to intestinal metaplasia (IM) to gastric cancer (GC). Here, CpG hypomethylation of the serine/threonine kinase STK31 promoter in IM and GC was detected in a reduced representation bisulfite sequencing database. STK31 hypomethylation, which resulted in its upregulation in 120 cases of primary GC, was confirmed. Using public genome­wide histone modification data, upregulation of STK31 promoter activity was detected in primary GC but not in normal mucosae, suggesting that STK31 may be repressed in gastric mucosa but activated in GC as a consequence of hypomethylation­associated chromatin remodeling. STK31 knockdown suppressed the proliferation, colony formation and migration activities of GC cells in vitro, whereas stable overexpression of STK31 promoted the proliferation, colony formation, and migration activities of GC cells in vitro and tumorigenesis in nude mice. Patients with GC in which STK31 was upregulated exhibited significantly shorter survival times in a combined cohort. Thus, activation of STK31 by chromatin remodeling may be associated with gastric carcinogenesis and also may help predict GC prognosis.


Assuntos
Biomarcadores Tumorais/genética , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/análise , Carcinogênese/genética , Ilhas de CpG/genética , Metilação de DNA , Feminino , Mucosa Gástrica/patologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/análise , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Ativação Transcricional , Regulação para Cima , Adulto Jovem
18.
Cancers (Basel) ; 13(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562573

RESUMO

The challenge in managing thyroid nodules is to accurately diagnose the minority of those with malignancy. We aimed to identify diagnostic and prognostic miRNA markers for thyroid nodules. In a discovery cohort, we identified 20 candidate miRNAs to differentiate between noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) and papillary thyroid carcinomas (PTC) by using the high-throughput small RNA sequencing method. We then selected three miRNAs (miR-136, miR-21, and miR-127) that were differentially expressed between the PTC follicular variant and other variants in The Cancer Genome Atlas data. High expression of three miRNAs differentiated thyroid cancer from nonmalignant tumors, with an area under curve (AUC) of 0.76-0.81 in an independent cohort. In patients with differentiated thyroid cancer, the high-level expression of the three miRNAs was an independent indicator for both distant metastases and recurrent or persistent disease. In patients with PTC, a high expression of miRNAs was associated with an aggressive histologic variant, extrathyroidal extension, distant metastasis, or recurrent or persistent disease. Three miRNAs may be used as diagnostic markers for differentiating thyroid cancers from benign tumors and tumors with extremely low malignant potential (NIFTP), as well as prognostic markers for predicting the risk of recurrent/persistent disease for differentiated thyroid cancer.

19.
Carcinogenesis ; 41(10): 1341-1352, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32706861

RESUMO

Pathological changes in the epigenetic landscape of chromatin are hallmarks of cancer. The caudal-type homeobox gene CDX2 is not expressed in normal gastric epithelia but rather in adult intestinal epithelia, and it is overexpressed in intestinal metaplasia (IM). However, it remains unclear how CDX2 transcription is suppressed in normal gastric epithelial cells and overexpressed in IM. Here, we demonstrate that methylation of the CDX2 promoter increases with age in Helicobacter pylori-positive, noncancerous gastric tissue, whereas the promoter is demethylated in paired gastric tumors in which CDX2 is upregulated. Moreover, we also found that the CDX2 promoter is demethylated in IM as well as gastric tumor. Immunohistochemistry revealed that CDX2 is present in foci of parts of the gastric mucosae but highly expressed in IM as well as in gastric tumors, suggesting that the elevated level of CDX2 in IM and gastric tumors may be attributable to promoter demethylation. Our data suggest that CDX2 repression may be associated with promoter methylation in noncancerous H. pylori-positive mucosa but its upregulation might be attributable to increased promoter activity mediated by chromatin remodeling during gastric carcinogenesis.


Assuntos
Fator de Transcrição CDX2/genética , Desmetilação do DNA , Metilação de DNA , Mucosa Gástrica/microbiologia , Regulação Neoplásica da Expressão Gênica , Helicobacter pylori , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Adulto , Fatores Etários , Idoso , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
20.
Cells ; 9(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225025

RESUMO

nc886 is a regulatory non-coding RNA (ncRNA) whose expression is frequently silenced in malignancies. In the case of esophageal squamous cell carcinoma (ESCC), nc886 silencing is associated with shorter survival of patients, suggesting nc886's tumor suppressor role in ESCC. However, this observation has not been complemented by an in-detail study about nc886's impact on gene expression and cellular phenotypes. Here we have shown that nc886 inhibits AKT, a key protein in a renowned pro-survival pathway in cancer. nc886-silenced cells (nc886- cells) have activated AKT and altered expression of cell cycle genes. nc886- cells tend to have lower expression of CDKN2A and CDKN2C, both of which are inhibitors for cyclin-dependent kinase (CDK), and higher expression of CDK4 than nc886-expressing cells. As a result, nc886- cells are hyperactive in the progression of the G1 to S cell cycle phase, proliferate faster, and are more sensitive to palbociclib, which is a cancer therapeutic drug that targets CDK4/6. Experimentally by nc886 expression and knockdown, we have determined the AKT target genes and cell cycle genes that are controlled by nc886 (nc886-associated gene sets). These gene sets, in combination with pathologic staging and nc886 expression levels, are a vastly superior predictor for the survival of 108 ESCC patients. In summary, our study has elucidated in ESCC how nc886 inhibits cell proliferation to explain its tumor suppressor role and identified gene sets that are of future clinical utility, by predicting patient survival and responsiveness to a therapeutic drug.


Assuntos
Ciclo Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA não Traduzido/genética , Transdução de Sinais , Sequência de Bases , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Fase G1/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Prognóstico , RNA não Traduzido/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA