Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Lipids Health Dis ; 22(1): 183, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37885013

RESUMO

BACKGROUND: Ceramide, a bioactive signaling sphingolipid, has long been implicated in cancer. Members of the ceramide synthase (CerS) family determine the acyl chain lengths of ceramides, with ceramide synthase 4 (CerS4) primarily generating C18-C20-ceramide. Although CerS4 is known to be overexpressed in breast cancer, its role in breast cancer pathogenesis is not well established. METHODS: To investigate the role of CerS4 in breast cancer, public datasets, including The Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus (GEO) datasets (GSE115577 and GSE96058) were analyzed. Furthermore, MCF-7 cells stably overexpressing CerS4 (MCF-7/CerS4) as a model for luminal subtype A (LumA) breast cancer were produced, and doxorubicin (also known as Adriamycin [AD])-resistant MCF-7/ADR cells were generated after prolonged treatment of MCF-7 cells with doxorubicin. Kaplan-Meier survival analysis assessed the clinical significance of CERS4 expression, while Student's t-tests or Analysis of Variance (ANOVA) compared gene expression and cell viability in different MCF-7 cell lines. RESULTS: Analysis of the public datasets revealed elevated CERS4 expression in breast cancer, especially in the most common breast cancer subtype, LumA. Persistent CerS4 overexpression in MCF-7 cells activated multiple cancer-associated pathways, including pathways involving sterol regulatory element-binding protein, nuclear factor kappa B (NF-κB), Akt/mammalian target of rapamycin (mTOR), and ß-catenin. Furthermore, MCF-7/CerS4 cells acquired doxorubicin, paclitaxel, and tamoxifen resistance, with concomitant upregulation of ATP-binding cassette (ABC) transporter genes, such as ABCB1, ABCC1, ABCC2, ABCC4, and ABCG2. MCF-7/CerS4 cells were characterized by increased cell migration and epithelial-mesenchymal transition (EMT). Finally, CERS4 knockdown in doxorubicin-resistant MCF-7/ADR cells resulted in reduced activation of cancer-associated pathways (NF-κB, Akt/mTOR, ß-catenin, and EMT) and diminished chemoresistance, accompanied by ABCB1 and ABCC1 downregulation. CONCLUSIONS: Chronic CerS4 overexpression may exert oncogenic effects in breast cancer via alterations in signaling, EMT, and chemoresistance. Therefore, CerS4 may represent an attractive target for anticancer therapy, especially in LumA breast cancer.


Assuntos
Neoplasias da Mama , Esfingosina N-Aciltransferase , Feminino , Humanos , Transportadores de Cassetes de Ligação de ATP , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias da Mama/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Esfingosina N-Aciltransferase/genética , Células MCF-7
2.
Int Orthop ; 47(1): 175-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36401020

RESUMO

PURPOSE: This study aimed to evaluate the infection control rate of palliative arthroscopic debridement, antibiotics, and implant retention (DAIR) for the high mortality risk or terminal cancer stage patients. METHODS: From March 2018 to August 2021, 21 patients met the following inclusion criteria: old age of more than 80, diagnosed as a terminal stage of cancer, high risk of mortality and morbidity representing as Charlson comorbidity index (CCI) ≥ 5, low daily activity with disabled extremity, and re-infection after two-stage revision. Each patient underwent arthroscopic DAIR and additional continuous irrigation for 48 hours. The need for subsequent re-arthroscopic DAIR or two-stage revision was determined by the post-operative trends of C-reactive protein (CRP) levels. Infection control was defined as continuing controlled status of infection based on clinical and laboratory results by one or two times of arthroscopic DAIR within initial two months. Treatment failure was defined as more than three times arthroscopic debridement, two-stage revision surgery, or expired due to uncontrolled infection. RESULTS: Arthroscopic DAIR controlled the infection in 19 (90.5%) of the 21 cases. The other knee underwent a total of three times of re-arthroscopic DAIR and the other one underwent two-stage revision. Although five patients expired during the follow-up period due to worsening medical problems or terminal cancer, there were no deaths from uncontrolled infection, sepsis, or surgery-related complications. CONCLUSIONS: Arthroscopic debridement with continuous irrigation for the infection TKA with high mortality risk or terminal cancer patients showed a 90.5% infection control rate. For high-risk patients, arthroscopic debridement with continuous irrigation can be an alternative treatment to improve the quality of life during survival.


Assuntos
Artroplastia do Joelho , Infecções Relacionadas à Prótese , Humanos , Artroplastia do Joelho/efeitos adversos , Desbridamento/efeitos adversos , Desbridamento/métodos , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento , Antibacterianos/uso terapêutico , Infecções Relacionadas à Prótese/epidemiologia , Infecções Relacionadas à Prótese/cirurgia , Infecções Relacionadas à Prótese/diagnóstico
3.
Autophagy ; 19(6): 1642-1661, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36184612

RESUMO

In the N-degron pathway, N-recognins recognize cognate substrates for degradation via the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). We have recently shown that the autophagy receptor SQSTM1/p62 (sequestosome 1) is an N-recognin that binds the N-terminal arginine (Nt-Arg) as an N-degron to modulate autophagic proteolysis. Here, we show that the N-degron pathway mediates pexophagy, in which damaged peroxisomal fragments are degraded by autophagy under normal and oxidative stress conditions. This degradative process initiates when the Nt-Cys of ACAD10 (acyl-CoA dehydrogenase family, member 10), a receptor in pexophagy, is oxidized into Cys sulfinic (CysO2) or sulfonic acid (CysO3) by ADO (2-aminoethanethiol (cysteamine) dioxygenase). Under oxidative stress, the Nt-Cys of ACAD10 is chemically oxidized by reactive oxygen species (ROS). The oxidized Nt-Cys2 is arginylated by ATE1-encoded R-transferases, generating the RCOX N-degron. RCOX-ACAD10 marks the site of pexophagy via the interaction with PEX5 and binds the ZZ domain of SQSTM1/p62, recruiting LC3+-autophagic membranes. In mice, knockout of either Ate1 responsible for Nt-arginylation or Sqstm1/p62 leads to increased levels of peroxisomes. In the cells from patients with peroxisome biogenesis disorders (PBDs), characterized by peroxisomal loss due to uncontrolled pexophagy, inhibition of either ATE1 or SQSTM1/p62 was sufficient to recover the level of peroxisomes. Our results demonstrate that the Cys-N-degron pathway generates an N-degron that regulates the removal of damaged peroxisomal membranes along with their contents. We suggest that tannic acid, a commercially available drug on the market, has a potential to treat PBDs through its activity to inhibit ATE1 R-transferases.Abbreviations: ACAA1, acetyl-Coenzyme A acyltransferase 1; ACAD, acyl-Coenzyme A dehydrogenase; ADO, 2-aminoethanethiol (cysteamine) dioxygenase; ATE1, arginyltransferase 1; CDO1, cysteine dioxygenase type 1; ER, endoplasmic reticulum; LIR, LC3-interacting region; MOXD1, monooxygenase, DBH-like 1; NAC, N-acetyl-cysteine; Nt-Arg, N-terminal arginine; Nt-Cys, N-terminal cysteine; PB1, Phox and Bem1p; PBD, peroxisome biogenesis disorder; PCO, plant cysteine oxidase; PDI, protein disulfide isomerase; PTS, peroxisomal targeting signal; R-COX, Nt-Arg-CysOX; RNS, reactive nitrogen species; ROS, reactive oxygen species; SNP, sodium nitroprusside; UBA, ubiquitin-associated; UPS, ubiquitinproteasome system.


Assuntos
Autofagia , Macroautofagia , Animais , Camundongos , Proteína Sequestossoma-1/metabolismo , Autofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Cisteamina , Cisteína , Ubiquitina/metabolismo , Arginina/metabolismo , Transferases/metabolismo
4.
Tissue Eng Regen Med ; 20(2): 271-284, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36462090

RESUMO

BACKGROUND: To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS: To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS: Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION: These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.


Assuntos
Células-Tronco Mesenquimais , Tonsila Palatina , Células da Medula Óssea , Meios de Cultivo Condicionados/farmacologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Humanos
5.
Medicina (Kaunas) ; 58(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295602

RESUMO

Background and Objectives: Although distal interphalangeal (DIP) arthrodesis is an effective surgical method for end-stage osteoarthritis of the phalangeal joint, the nonunion rate of DIP arthrodesis has been reported to range from 15% to 20%. To this end, we devised an inlay technique with a cortico-cancellous olecranon bone graft for failed DIP arthrodesis. This study aimed to introduce the inlay bone grafting technique for failed arthrodesis of the DIP joint and demonstrate its advantages. Materials and Methods: We reviewed consecutive 19 digits (15 patients) who had undergone DIP revision arthrodesis using the technique at our institution between January 2010 and December 2020. The observed outcome measures were the bone union rate, and related complications. Bone union was evaluated using follow-up radiography. The quick Disabilities of the Arm, Shoulder and Hand (DASH), visual analog scale (VAS) for pain, and VAS for satisfaction assessed patient function and perceived clinical outcomes. Results: No major complications were observed at the recipient site. The average VAS for pain and satisfaction and DASH score improved from preoperatively to 6 months after surgery (both, p = 0.001). Conclusions: The inlay technique with cortico-cancellous olecranon bone grafts showed excellent bone union rates and functional scores with nonunion of the DIP joint. This technique may be an adequate surgical option for patients with confirmed nonunion of the DIP joint and persistent symptoms.


Assuntos
Olécrano , Osteoartrite , Humanos , Olécrano/cirurgia , Artrodese/métodos , Osteoartrite/cirurgia , Radiografia , Dor , Estudos Retrospectivos , Resultado do Tratamento
6.
Tissue Eng Regen Med ; 19(1): 131-139, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013919

RESUMO

BACKGROUND: Therapeutic strategies that can promote platelet production are in demand to enhance clinical outcomes of bone marrow transplantation (BMT). Our research group has studied human tonsil-derived mesenchymal stem cells (T-MSCs) and their effectiveness in promoting bone marrow (BM) engraftment. Here, we analyzed the effects of T-MSCs on platelet production and hemostasis. METHODS: Donor BM cells (BMCs) were isolated from C57BL/6 mice and transplanted with or without T-MSCs to BALB/c recipient mice. Mice were sacrificed and blood cells were counted using an Auto Hematology Analyzer. Femur sections were stained with CD41 antibody to analyze megakaryocytes in the BM. Growth factor secretion from MSCs was analyzed using the Quantibody Array. Effects of T-MSC conditioned medium (CM) on megakaryopoiesis were investigated using the MegaCult assay. In a mouse model of BMT, T-MSC CM was injected with or without anti-placental growth factor (α-PlGF) blocking antibody, and blood cell numbers and coagulation were analyzed. RESULTS: T-MSC co-transplantation increased percent survival of BMT mice. Platelet numbers were significantly lower in the BMC-only group, whereas T-MSC co-transplantation restored circulating platelets to levels similar to those of the control group. Significantly reduced numbers of CD41 + megakaryocytes in Bu-Cy and BMC groups were increased by T-MSC co-transplantation. PlGF secretion from T-MSCs were detected and enhanced megakaryopoiesis, platelet production, and coagulation by T-MCS CM were disrupted in the presence of the α-PlGF blocking antibody. CONCLUSION: We demonstrated the effectiveness of T-MSC co-transplantation in promoting platelet production and coagulation after BMT. These findings highlight the potential therapeutic relevance of T-MSCs for preventing thrombocytopenia after BMT.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea , Transplante de Medula Óssea , Camundongos , Camundongos Endogâmicos C57BL
7.
Stem Cell Res Ther ; 12(1): 329, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090520

RESUMO

BACKGROUND: Co-transplantation of bone marrow cells (BMCs) and mesenchymal stem cells (MSCs) is used as a strategy to improve the outcomes of bone marrow transplantation. Tonsil-derived MSCs (TMSCs) are a promising source of MSCs for co-transplantation. Previous studies have shown that TMSCs or conditioned media from TMSCs (TMSC-CM) enhance BMC engraftment. However, the factors in TMSCs that promote better engraftment have not yet been identified. METHODS: Mice were subjected to a myeloablative regimen of busulfan and cyclophosphamide, and the mRNA expression in the bone marrow was analyzed using an extracellular matrix (ECM) and adhesion molecule-targeted polymerase chain reaction (PCR) array. Nano-liquid chromatography with tandem mass spectrometry, real-time quantitative PCR, western blots, and enzyme-linked immunosorbent assays were used to compare the expression levels of metalloproteinase 3 (MMP3) in MSCs derived from various tissues, including the tonsils, bone marrow, adipose tissue, and umbilical cord. Recipient mice were conditioned with busulfan and cyclophosphamide, and BMCs, either as a sole population or with control or MMP3-knockdown TMSCs, were co-transplanted into these mice. The effects of TMSC-expressed MMP3 were investigated. Additionally, Enzchek collagenase and Transwell migration assays were used to confirm that the collagenase activity of TMSC-expressed MMP3 enhanced BMC migration. RESULTS: Mice subjected to the myeloablative regimen exhibited increased mRNA expression of collagen type IV alpha 1/2 (Col4a1 and Col4a2). Among the various extracellular matrix-modulating proteins secreted by TMSCs, MMP3 was expressed at higher levels in TMSCs than in other MSCs. Mice co-transplanted with BMCs and control TMSCs exhibited a higher survival rate, weight recovery, and bone marrow cellularity compared with mice co-transplanted with BMCs and MMP3-knockdown TMSCs. Control TMSC-CM possessed higher collagenase activity against collagen IV than MMP3-knockdown TMSC-CM. TMSC-CM also accelerated BMC migration by degrading collagen IV in vitro. CONCLUSIONS: Collectively, these results indicate that TMSCs enhance BMC engraftment by the secretion of MMP3 for the modulation of the bone marrow extracellular matrix.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Colágeno Tipo IV , Camundongos , Tonsila Palatina
8.
Tissue Eng Regen Med ; 18(2): 253-264, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33113109

RESUMO

BACKGROUND: The advantages of tonsil-derived mesenchymal stem cells (TMSCs) over other mesenchymal stem cells (MSCs) include higher proliferation rates, various differentiation potentials, efficient immune-modulating capacity, and ease of obtainment. Specifically, TMSCs have been shown to differentiate into the endodermal lineage. Estrogen deficiency is a major cause of postmenopausal osteoporosis and is associated with higher incidences of ischemic heart disease and cerebrovascular attacks during the postmenopausal period. Therefore, stem cell-derived, estrogen-secreting cells might be used for estrogen deficiency. METHODS: Here, we developed a novel method that utilizes retinoic acid, insulin-like growth factor-1, basic fibroblast growth factor, and dexamethasone to evaluate the differentiating potential of TMSCs into estrogen-secreting cells. The efficacy of the novel differentiating method for generation of estrogen-secreting cells was also evaluated with bone marrow- and adipose tissue-derived MSCs. RESULTS: Incubating TMSCs in differentiating media induced the gene expression of cytochrome P450 19A1 (CYP19A1), which plays a key role in estrogen biosynthesis, and increased 17ß-estradiol secretion upon testosterone addition. Furthermore, CYP11A1, CYP17A1, and 3ß-hydroxysteroid dehydrogenase type-1 gene expression levels were significantly increased in TMSCs. In bone marrow-derived and adipose tissue-derived MSCs, this differentiation method also induced the gene expression of CYP19A1, but not CYP17A1, suggesting TMSCs are a superior source for estrogen secretion. CONCLUSION: These results imply that TMSCs can differentiate into functional estrogen-secreting cells, thus providing a novel, alternative cell therapy for estrogen deficiency.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Estrogênios , Células-Tronco Mesenquimais , Tonsila Palatina , Diferenciação Celular , Estrogênios/metabolismo , Tonsila Palatina/citologia
9.
Int J Mol Med ; 46(3): 1166-1174, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32582998

RESUMO

Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre­BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self­tolerance. Delayed thymus reconstitution following pre­BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell­mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)­7, IL­22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co­transplantation of tonsil­derived mesenchymal stromal cells (T­MSCs) with BM­derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre­BMT conditioning with busulfan­cyclophosphamide treatment, possibly by inducing FMS­like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T­MSCs. The co­transplantation of T­MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre­BMT cytotoxic conditioning. Furthermore, T­MSC co­transplantation improved the recovery of the TCR repertoire and led to increased thymus­generated T cell diversity.


Assuntos
Transplante de Medula Óssea/métodos , Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Linfócitos T/citologia , Timo/citologia , Animais , Complexo CD3 , Feminino , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tonsila Palatina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo
10.
Cells ; 9(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952360

RESUMO

Cotransplantation of mesenchymal stem cells (MSCs) with hematopoietic stem cells (HSCs) has been widely reported to promote HSC engraftment and enhance marrow stromal regeneration. The present study aimed to define whether MSC conditioned medium could recapitulate the effects of MSC cotransplantation. Mouse bone marrow (BM) was partially ablated by the administration of a busulfan and cyclophosphamide (Bu-Cy)-conditioning regimen in BALB/c recipient mice. BM cells (BMCs) isolated from C57BL/6 mice were transplanted via tail vein with or without tonsil-derived MSC conditioned medium (T-MSC CM). Histological analysis of femurs showed increased BM cellularity when T-MSC CM or recombinant human pleiotrophin (rhPTN), a cytokine readily secreted from T-MSCs with a function in hematopoiesis, was injected with BMCs. Microstructural impairment in mesenteric and BM arteriole endothelial cells (ECs) were observed after treatment with Bu-Cy-conditioning regimen; however, T-MSC CM or rhPTN treatment restored the defects. These effects by T-MSC CM were disrupted in the presence of an anti-PTN antibody, indicating that PTN is a key mediator of EC restoration and enhanced BM engraftment. In conclusion, T-MSC CM administration enhances BM engraftment, in part by restoring vasculature via PTN production. These findings highlight the potential therapeutic relevance of T-MSC CM for increasing HSC transplantation efficacy.


Assuntos
Transplante de Medula Óssea , Proteínas de Transporte/farmacologia , Meios de Cultivo Condicionados/farmacologia , Citocinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
11.
Exp Mol Med ; 51(11): 1-16, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676768

RESUMO

The endoplasmic reticulum (ER) is not only important for protein synthesis and folding but is also crucial for lipid synthesis and metabolism. In the current study, we demonstrate an important role of ceramide synthases (CerS) in ER stress and NAFLD progression. Ceramide is important in sphingolipid metabolism, and its acyl chain length is determined by a family of six CerS in mammals. CerS2 generates C22-C24 ceramides, and CerS5 or CerS6 produces C16 ceramide. To gain insight into the role of CerS in NAFLD, we used a high-fat diet (HFD)-induced NAFLD mouse model. Decreased levels of CerS2 and increased levels of CerS6 were observed in the steatotic livers of mice fed a HFD. In vitro experiments with Hep3B cells indicated the protective role of CerS2 and the detrimental role of CerS6 in the ER stress response induced by palmitate treatment. In particular, CerS6 overexpression increased sterol regulatory element-binding protein-1 (SREBP-1) cleavage with decreased levels of INSIG-1, leading to increased lipogenesis. Blocking ER stress abrogated the detrimental effects of CerS6 on palmitate-induced SREBP-1 cleavage. In accordance with the protective role of CerS2 in the palmitate-induced ER stress response, CerS2 knockdown enhanced ER stress and SREBP-1 cleavage, and CerS2 heterozygote livers exhibited a stronger ER stress response and higher triglyceride levels following HFD. Finally, treatment with a low dose of bortezomib increased hepatic CerS2 expression and protected the development of NAFLD following HFD. These results indicate that CerS and its derivatives impact hepatic ER stress and lipogenesis differently and might be therapeutic targets for NAFLD.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fígado/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Esfingosina N-Aciltransferase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
12.
Stem Cells ; 37(10): 1252-1260, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31287931

RESUMO

Since the discovery of stem cells and multipotency characteristics of mesenchymal stem cells (MSCs), there has been tremendous development in regenerative medicine. MSCs derived from bone marrow have been widely used in various research applications, yet there are limitations such as invasiveness of obtaining samples, low yield and proliferation rate, and questions regarding their practicality in clinical applications. Some have suggested that MSCs from other sources, specifically those derived from palatine tonsil tissues, that is, tonsil-derived MSCs (TMSCs), could be considered as a new potential therapeutic tool in regenerative medicine due to their superior proliferation rate and differentiation capabilities with low immunogenicity and ease of obtaining. Several studies have determined that TMSCs have differentiation potential not only into the mesodermal lineage but also into the endodermal as well as ectodermal lineages, expanding their potential usage and placing them as an appealing option to consider for future studies in regenerative medicine. In this review, the differentiation capacities of TMSCs and their therapeutic competencies from past studies are addressed. Stem Cells 2019;37:1252-1260.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Tonsila Palatina/metabolismo , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Humanos , Tonsila Palatina/citologia
13.
Int J Pharm ; 566: 229-238, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31136778

RESUMO

Sorafenib, a potent anticancer drug, has low absorption in the gastrointestinal tract due to its poor aqueous solubility. The main purpose of this investigation was to design sorafenib nanoparticle using a newly developed technique, nanoparticulation using fat and supercritical fluid (NUFS™) to improve the absorption of sorafenib. The quality by design (QbD) tool was adopted to define the optimal formulation variables: hydroxypropyl methyl cellulose (HPMC), polyvinyl pyrrolidone K30 (PVP), and poloxamer. The studied response variables were particle size of nanoparticle, dissolution (5, 60, and 180 min), drug concentration time profile of nanoparticle formulations, and maximum drug concentration. The result of particle size revealed that an increase in concentration of poloxamer and HPMC decreased the particle size of nanoparticles (p < 0.05). Likewise, the concentration of drug release at different time point (5, 60, and 180 min) showed HPMC and poloxamer had positive effects on drug dissolution while PVP had negative effects on it. The design space was built in accordance with the particle size of nanoparticle (target < 500 nm) and dissolution of sorafenib (target > 7 µm/mL), following failure probability analysis using Monte Carlo simulations. In vivo pharmacokinetics studies in beagle dogs demonstrated that optimized formulation of sorafenib (F3 and F4 tablets) exhibited higher blood drug profiles indicating better absorption compared to the reference tablet (Nexavar®). In conclusion, this study showed the importance of systematic formulation design for understanding the effect of formulation variables on the characteristics of nanoparticles of the poorly soluble drug.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Sorafenibe/administração & dosagem , Administração Oral , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Cães , Desenho de Fármacos , Liberação Controlada de Fármacos , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacocinética , Masculino , Nanopartículas/química , Tamanho da Partícula , Poloxâmero/administração & dosagem , Poloxâmero/química , Poloxâmero/farmacocinética , Povidona/administração & dosagem , Povidona/química , Povidona/farmacocinética , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Sorafenibe/sangue , Sorafenibe/química , Sorafenibe/farmacocinética
14.
Cells ; 8(4)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018536

RESUMO

Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder accompanied by high blood glucose, insulin resistance, and relative insulin deficiency. Endoplasmic reticulum (ER) stress induced by high glucose and free fatty acids has been suggested as one of the main causes of ß-cell dysfunction and death in T2DM. Stem cell-derived insulin-secreting cells were recently suggested as a novel therapy for diabetes. In the present study, we demonstrate the therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) to treat high-fat diet (HFD)-induced T2DM. To explore whether TMSC administration can alleviate T2DM, TMSCs were intraperitoneally injected in HFD-induced T2DM mice once every 2 weeks. TMSC injection markedly improved glucose tolerance and glucose-stimulated insulin secretion and prevented HFD-induced pancreatic ß-cell hypertrophy and cell death. In addition, TMSC injection relieved the ER-stress response and preserved gene expression related to glucose sensing and insulin secretion. Moreover, administration of TMSC-derived conditioned medium induced similar therapeutic outcomes, suggesting paracrine effects. Finally, proteomic analysis revealed high secretion of insulin-like growth factor-binding protein 5 by TMSCs, and its expression was critical for the protective effects of TMSCs against HFD-induced glucose intolerance and ER-stress response in pancreatic islets. TMSC administration can alleviate HFD-induced-T2DM via preserving pancreatic islets and their function. These results provide novel evidence of TMSCs as an ER-stress modulator that may be a novel, alternative cell therapy for T2DM.


Assuntos
Intolerância à Glucose/metabolismo , Intolerância à Glucose/terapia , Células-Tronco Mesenquimais/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Glucose/metabolismo , Intolerância à Glucose/etiologia , Humanos , Hiperglicemia/complicações , Insulina/genética , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Tonsila Palatina/metabolismo , Tonsila Palatina/fisiologia
15.
Mol Med Rep ; 19(1): 609-616, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431127

RESUMO

Graft-vs.-host disease (GVHD) is a severe and potentially life-threatening complication of hematopoietic stem cell transplantation. Approximately 50% of patients exhibiting GVHD will not benefit from conventional steroid treatment. Although several second­line treatments are available for these patients, their prognoses remain poor due to the increased risk of infection, immunosuppression-mediated toxicity and incomplete GVHD remission, which occurs in the majority of cases. Mesenchymal stem cells (MSCs), a multipotent cell population, possess broad immunosuppressive activity and are a reportedly effective treatment of GVHD. However, the therapeutic effects of conditioned medium from MSCs on GVHD have not been demonstrated. In the present study, the efficacy of conditioned medium from human palatine tonsil­derived MSCs (T­MSC­CM) was validated against GVHD in mice. The suppressive function of T­MSC­CM on immune cell chemotaxis was confirmed in vitro. A systemic infusion of T­MSC­CM in mice with GVHD resulted in prolonged survival, rapid recovery from weight loss and reduced pathological damage in numerous GVHD­targeted organs. Furthermore, lymphocyte gene expression was significantly downregulated in GVHD mice administered T­MSC­CM. These results indicate that T­MSC­CM is a promising cellular agent to prevent or treat transplantation­associated complications such as GVHD.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Animais , Células Cultivadas , Feminino , Doença Enxerto-Hospedeiro/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
16.
Oncol Rep ; 40(5): 2977-2987, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226616

RESUMO

Recently, sphingolipid derivatives, such as ceramide and sphingosine­1­phosphate (S1P), have emerged as key modulators in apoptotic cell death and cell proliferation. This study aimed to clarify the underlying signaling pathways of ceramide and S1P involved in breast cancer cell proliferation. Ceramide acyl chain length is determined by six mammalian ceramide synthases (CerS). We overexpressed CerS1 to 6 in MCF­7 cells to examine whether ceramide signaling propagation varies as a function of acyl chain length. Among the six CerS, only CerS6 overexpression reduced phosphorylation of Akt, S6 kinase (S6K), and extracellular signal­regulated kinases (ERK) as shown by western blotting. In addition, CerS6 overexpression reduced MCF­7 cell proliferation. This effect was partially reversed by co­treatment with MHY1485, an activator of mammalian target of rapamycin (mTOR), demonstrating an important role for the mTOR pathway in the CerS6­mediated decrease in MCF­7 cell proliferation. ERK inhibition, but not Akt inhibition, along with mTOR inhibition synergistically reduced MCF­7 cell proliferation as measured by MTT assay. Notably, the expression of CerS6 and S1P receptor 2 (S1PR2), or CerS6 and sphingosine kinase 1 (SphK1), were negatively correlated according to the invasive breast carcinoma patient cohort in The Cancer Genome Atlas database. In addition, both SphK1 overexpression and S1P addition increased mTOR phosphorylation as shown by ELISA, while S1PR2 inhibition had the inverse effect. These data suggest that CerS6 and SphK1 regulate mTOR signaling in breast cancer cell proliferation. Moreover, mTOR activity can be regulated by the balance between S1P and C16­ceramide, which is generated by CerS6.


Assuntos
Neoplasias da Mama/genética , Proteínas de Membrana/genética , Receptores de Lisoesfingolipídeo/genética , Esfingosina N-Aciltransferase/genética , Serina-Treonina Quinases TOR/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Ceramidas/biossíntese , Ceramidas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Morfolinas/farmacologia , Proteína Oncogênica v-akt/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/biossíntese , Esfingosina/genética , Receptores de Esfingosina-1-Fosfato , Triazinas/farmacologia
17.
Int J Mol Med ; 41(3): 1715-1723, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29286073

RESUMO

Gallstone disease is one of the most prevalent and costly gastrointestinal disorders worldwide. Gallstones are formed in the biliary system by cholesterol secretions in bile, which result from excess cholesterol, a deficiency in bile salts or a combination of the two. The present study examined the effects of proteasome inhibition on gallstone formation using the proteasome inhibitors bortezomib (BT) and carfilzomib (CF). C57BL/6J mice were fed a lithogenic diet to generate gallstones and injected with BT or CF for 12 weeks. After 12 weeks of the lithogenic diet, 8 out of the 10 mice in the control group had developed gallstones, whereas none of the mice who received proteasome inhibitors had developed gallstones. Notably, the expression of genes associated with cholesterol synthesis (sterol regulatory element­binding protein­2 and 3­hydroxy­3­methylglutaryl­CoA reductase), cholesterol secretion [ATP­binding cassette subfamily G member 5 (ABCG5) and ABCG8] and bile acid synthesis [cytochrome P450 family 7 subfamily A member 1 (Cyp7a1), Cyp7b1, Cyp27a1 and Cyp8b1] was reduced in the livers of mice injected with BT or CF. Cyp7a1 encodes cholesterol 7α­hydroxylase, the rate­limiting enzyme in the synthesis of bile acid from cholesterol. The present study therefore measured the expression levels of transcription factors that are known to inhibit Cyp7a1 expression, namely farnesoid X receptor (FXR), pregnane X receptor (PXR) and small heterodimer partner (SHP). Although FXR, PXR and SHP expression was predicted to increase in the presence of proteasome inhibitors, the expression levels were actually reduced; thus, it was concluded that they were not involved in the proteasome inhibition­induced regulation of Cyp7a1. Further investigation of the mitogen­activated protein kinase and protein kinase A (PKA) signaling pathways in human hepatoma cells revealed that proteasome inhibition­induced c­Jun N­terminal kinase (JNK) phosphorylation reduced CYP7A1 and CYP27A1 expression. In addition, reduced PKA phosphorylation as a result of proteasome inhibition regulated ABCG5 and ABCG8 expression. In conclusion, these findings suggest that proteasome inhibition regulates cholesterol and biliary metabolism via the JNK and PKA pathways, and is a promising therapeutic strategy to prevent gallstone disease.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Cálculos Biliares/tratamento farmacológico , Cálculos Biliares/metabolismo , Homeostase , Inibidores de Proteassoma/uso terapêutico , Substâncias Protetoras/uso terapêutico , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Colesterol 7-alfa-Hidroxilase/metabolismo , Dieta , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cálculos Biliares/patologia , Homeostase/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Substâncias Protetoras/farmacologia
18.
Drug Dev Ind Pharm ; 43(9): 1557-1565, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28554216

RESUMO

OBJECTIVES: Nanoparticulation using fat and supercritical fluid (NUFSTM) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). METHODS: NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. RESULTS: NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva®. In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva®. The relative bioavailability of NUFS-Ert compared with that of Tarceva® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva®. CONCLUSIONS: NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva®.


Assuntos
Antineoplásicos/farmacocinética , Disponibilidade Biológica , Cloridrato de Erlotinib/farmacocinética , Excipientes/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/química , Química Farmacêutica , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/farmacologia , Humanos , Camundongos Nus , Solubilidade
19.
Int J Mol Med ; 39(2): 453-462, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28035360

RESUMO

Chronic inflammation is associated with the pathogenesis of type 2 diabetes and diabetic complications, and palmitate has been nominated as a candidate for the molecular link between these disorders. Recently, a crucial role of ceramide in inflammation and metabolic diseases has been reported. Therefore, in this study, we investigated whether ceramide formation is involved in palmitate­induced hepatic inflammation in vitro and in vivo. Ceramide can be generated either by the de novo pathway or by sphingomyelin degradation, and six different ceramide synthases (CerS) determine the specific acyl chain length of ceramide in mammals. We examined the roles of CerS and sphingomyelinases (SMases) in the secretion of inflammatory cytokines, such as tumour necrosis factor (TNF)­α, interleukin (IL)­1ß, and IL­6 in Hep3B cells. Among the six CerS, CerS6 overexpression uniquely elevated TNF­α secretion via p38 mitogen­activated protein kinase (MAPK) activation. In addition, the treatment of CerS6 overexpressing cells with palmitate synergistically increased cytokine secretion. However, neither palmitate treatment nor CerS6 overexpression altered lipopolysaccharide (LPS)-induced cytokine secretion. Instead, the activation of acidic (A)­SMase was involved in LPS­induced cytokine secretion via the MAPK/NF­κB pathway. Finally, the suppression of ceramide generation via A­SMase inhibition or de novo ceramide synthesis decreased high­fat diet­induced hepatic cytokine production in vivo. On the whole, our results revealed that CerS6 played a role in TNF­α secretion, and palmitate augmented inflammatory responses in pathophysiological conditions in which CerS6 is overexpressed. In addition, A­SMase activation was shown to be involved in LPS­induced inflammatory processes, suggesting that the modulation of CerS6 and A­SMase may be a therapeutic target for controlling hepatic inflammation.


Assuntos
Citocinas/metabolismo , Hepatócitos/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Animais , Desipramina/administração & dosagem , Dieta Hiperlipídica , Ácidos Graxos Monoinsaturados/administração & dosagem , Masculino , Proteínas de Membrana/genética , Camundongos , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Esfingomielinas/metabolismo , Esfingosina N-Aciltransferase/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Int J Mol Sci ; 17(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834852

RESUMO

Schwann cells (SCs), which produce neurotropic factors and adhesive molecules, have been reported previously to contribute to structural support and guidance during axonal regeneration; therefore, they are potentially a crucial target in the restoration of injured nervous tissues. Autologous SC transplantation has been performed and has shown promising clinical results for treating nerve injuries and donor site morbidity, and insufficient production of the cells have been considered as a major issue. Here, we performed differentiation of tonsil-derived mesenchymal stem cells (T-MSCs) into SC-like cells (T-MSC-SCs), to evaluate T-MSC-SCs as an alternative to SCs. Using SC markers such as CAD19, GFAP, MBP, NGFR, S100B, and KROX20 during quantitative real-time PCR we detected the upregulation of NGFR, S100B, and KROX20 and the downregulation of CAD19 and MBP at the fully differentiated stage. Furthermore, we found myelination of axons when differentiated SCs were cocultured with mouse dorsal root ganglion neurons. The application of T-MSC-SCs to a mouse model of sciatic nerve injury produced marked improvements in gait and promoted regeneration of damaged nerves. Thus, the transplantation of human T-MSCs might be suitable for assisting in peripheral nerve regeneration.


Assuntos
Células-Tronco Mesenquimais/citologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/reabilitação , Células de Schwann/citologia , Nervo Isquiático/lesões , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Criança , Técnicas de Cocultura , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Tonsila Palatina/cirurgia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/cirurgia , Recuperação de Função Fisiológica , Células de Schwann/metabolismo , Células de Schwann/transplante , Nervo Isquiático/metabolismo , Tonsilectomia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA