Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142476

RESUMO

The development of a strategy to investigate interfacial phenomena at lipid membranes is practically useful because most essential biomolecular interactions occur at cell membranes. In this study, a colorimetric method based on cysteine-encapsulated liposomes was examined using gold nanoparticles as a probe to provide a platform to report an enzymatic activity at lipid membranes. The cysteine-encapsulated liposomes were prepared with varying ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol through the hydration of lipid films and extrusions in the presence of cysteine. The size, composition, and stability of resulting liposomes were analyzed by scanning electron microscopy (SEM), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) spectroscopy, and UV-vis spectrophotometry. The results showed that the increased cholesterol content improved the stability of liposomes, and the liposomes were formulated with 60 mol % cholesterol for the subsequent experiments. Triton X-100 was tested to disrupt the lipid membranes to release the encapsulated cysteine from the liposomes. Cysteine can induce the aggregation of gold nanoparticles accompanying a color change, and the colorimetric response of gold nanoparticles to the released cysteine was investigated in various media. Except in buffer solutions at around pH 5, the cysteine-encapsulated liposomes showed the color change of gold nanoparticles only after being incubated with Triton X-100. Finally, the cysteine-encapsulated liposomal platform was tested to report the enzymatic activity of phospholipase A2 that hydrolyzes phospholipids in the membrane. The hydrolysis of phospholipids triggered the release of cysteine from the liposomes, and the released cysteine was successfully detected by monitoring the distinct red-to-blue color change of gold nanoparticles. The presence of phospholipase A2 was also confirmed by the appearance of a peak around 690 nm in the UV-vis spectra, which is caused by the cysteine-induced aggregation of gold nanoparticles. The results demonstrated that the cysteine-encapsulated liposome has the potential to be used to investigate biological interactions occurring at lipid membranes.


Assuntos
Lipossomos , Nanopartículas Metálicas , Colesterol , Cisteína , Dimiristoilfosfatidilcolina , Ouro/química , Lipossomos/química , Nanopartículas Metálicas/química , Octoxinol , Fosfolipases , Fosfolipídeos , Fosforilcolina
2.
Pharmaceutics ; 14(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456692

RESUMO

Specific targeting, selective stimuli-responsiveness, and controlled release of anticancer agents are requested for high therapeutic efficiency with a minimal adverse effect. Herein, we report the sophisticated synthesis and functionalization of fluorescent mesoporous silicon (FMPSi) nanoparticles decorated with graphene oxide (GO) nanosheets. GO-wrapped FMPSi (FMPSi@GO) was loaded with a cisplatin (Cis) anticancer agent, and Cis-loaded FMPSi@GO (FMPSi-Cis@GO) exhibited the dual stimuli (pH and NIR)-responsiveness of controlled drug release, i.e., the drug release rate was distinctly enhanced at acidic pH 5.5 than at neutral pH 7.0 and further enhanced under NIR irradiation at acidic pH condition. Notably, dequalinium-conjugated FMPSi-Cis@GO (FMPSi-Cis@GO@DQA) demonstrated an excellent specificity for mitochondrial targeting in cancer cells without noticeable toxicity to normal human cells. Our novel silicon nanocarriers demonstrated not only stimuli (pH and NIR)-responsive controlled drug release, but also selective accumulation in the mitochondria of cancer cells and destroying them.

3.
RSC Adv ; 11(16): 9664-9674, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423462

RESUMO

Colorimetric detection is a promising sensing strategy that is applicable to qualitative and quantitative determination of an analyte by monitoring visually detectable color changes with the naked eye. This study explored the cysteine (Cys)-induced aggregation of gold nanoparticles (AuNPs) in order to develop a sensitive colorimetric detection method for Cys. For this purpose, we systematically investigated the colorimetric response of AuNPs to Cys with varying particle sizes and concentrations. The AuNPs with various diameters ranging from 26.5 nm to 58.2 nm were synthesized by the citrate reduction method. When dispersed in water to have the same surface area per unit volume, the smaller AuNPs (26.5 nm) exhibited a more sensitive response to Cys compared to a larger counterpart (46.3 nm). We also examined the effect of divalent first-row transition metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) on the Cys-induced aggregation of AuNPs. Among the tested metal ions, the addition of Cu2+ provided the highest enhancement in sensitivity to Cys regardless of pH between 3.5 and 7. The significant increase in the sensitivity caused by Cu2+ could be attributed to the capability of Cu2+ to form a highly stable chelate complex with surface-immobilized Cys, facilitating the aggregation of AuNPs. For the AuNPs-Cu2+ system at pH 7, the detection limit for Cys was determined to be 5 nM using UV-vis spectroscopy. The reported strategy showed the potential to be used for a rapid and sensitive detection of Cys and also metal ions that can facilitate Cys-mediated aggregation of AuNPs.

4.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA