Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
FASEB J ; 38(9): e23638, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713098

RESUMO

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Assuntos
Barreira Hematorretiniana , Diabetes Mellitus Experimental , Retinopatia Diabética , Interleucina-10 , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Interleucina-10/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Masculino , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Estreptozocina , Ativação de Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673975

RESUMO

Previously, we reported that epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (EMR1/ADGRE1) is abnormally expressed in colon cancer (CC) and is a risk factor for lymph node metastasis (LNM) and poor recurrence-free survival in patients with abundant tumor-associated macrophages (TAMs). However, the signaling pathways associated with EMR1 expression in CC progression remain unclear. In this study, we aimed to explore the role of EMR1 and its signaling interactions with macrophages in CC progression. Spatial transcriptomics of pT3 microsatellite unstable CC tissues revealed heightened Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in EMR1-HL CC with LNM compared to EMR1-N CC without LNM. Through in vitro coculture of CC cells with macrophages, EMR1 expression by CC cells was found to be induced by TAMs, ultimately interacting with upregulated JAK/STAT signaling, increasing cell proliferation, migration, and motility, and reducing apoptosis. JAK2/STAT3 inhibition decreased the levels of EMR1, JAK2, STAT1, and STAT3, significantly impeded the proliferation, migration, and mobility of cells, and increased the apoptosis of EMR1+ CC cells compared to their EMR1KO counterparts. Overall, TAMs-induced EMR1 upregulation in CC cells may promote LNM and CC progression via JAK2/STAT1,3 signaling upregulation. This study provides further insights into the molecular mechanisms involving macrophages and intracellular EMR1 expression in CC progression, suggesting its clinical significance and offering potential interventions to enhance patient outcomes.


Assuntos
Neoplasias do Colo , Janus Quinase 2 , Transdução de Sinais , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Regulação para Cima , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Apoptose/genética
3.
Free Radic Biol Med ; 212: 10-21, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101587

RESUMO

Transplantation of mitochondria derived from mesenchymal stem cells (MSCs) has emerged as a new treatment method to improve mitochondrial dysfunction and alleviate cell impairment. Interest in using extrinsic mitochondrial transplantation as a therapeutic approach has been increasing because it has been confirmed to be effective in treating various diseases related to mitochondrial dysfunction, including ischemia, cardiovascular disease, and toxic damage. To support this application, we conducted an experiment to deliver external mitochondria to retinal pigment epithelial cells treated with oligomeric amyloid-beta (oAß). Externally delivered amyloid-beta internalizes into cells and interacts with mitochondria, resulting in mitochondrial dysfunction and intracellular damage, including increased reactive oxygen species and destruction of tight junction proteins. Externally delivered mitochondria were confirmed to alleviate mitochondrial dysfunction and tight junction protein disruption as well as improve internalized oAß clearance. These results were also confirmed in a mouse model in vivo. Overall, these findings indicate that the transfer of external mitochondria isolated from MSCs has potential as a new treatment method for age-related macular degeneration, which involves oAß-induced changes to the retinal pigment epithelium.


Assuntos
Doenças Mitocondriais , Epitélio Pigmentado da Retina , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Proteínas de Junções Íntimas/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo
4.
Cell Death Dis ; 14(5): 334, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210384

RESUMO

Degenerative changes of the retinal pigment epithelium (RPE) triggered by transforming growth factor-ß2 (TGF-ß2) and oxidative stress play a critical role in the progression of age-related macular degeneration (AMD). The expression of α-klotho, an antiaging protein, declines with age, increasing the risk factors for age-related diseases. Here, we investigated the protective effects of soluble α-klotho on TGF-ß2-induced RPE degeneration. The morphological changes induced by TGF-ß2, including epithelial-mesenchymal transition (EMT), were attenuated in the mouse RPE by the intravitreal injection (IVT) of α-klotho. In ARPE19 cells, EMT and morphological alterations by TGF-ß2 were attenuated by co-incubation with α-klotho. TGF-ß2 decreased miR-200a accompanied by zinc finger e-box binding homeobox1 (ZEB1) upregulation and EMT, all of which were prevented by α-klotho co-treatment. Inhibitor of miR-200a mimicked TGF-ß2-induced morphological changes, which were recovered by ZEP1 silencing, but not by α-klotho, implying the upstream regulation of α-klotho on miR-200a-ZEP1-EMT axis. α-Klotho inhibited receptor binding of TGF-ß2, Smad2/3 phosphorylation, extracellular signal-regulated protein kinase 1/2 (ERK1/2)-a mechanistic target of rapamycin (mTOR) activation and oxidative stress via NADPH oxidase 4 (NOX4) upregulation. Furthermore, α-klotho recovered the TGF-ß2-induced mitochondrial activation and superoxide generation. Interestingly, TGF-ß2 upregulated α-klotho expression in the RPE cells, and genetic suppression of endogenous α-klotho aggravated TGF-ß2-induced oxidative stress and EMT. Lastly, α-klotho abrogated senescence-associated signaling molecules and phenotypes induced by long-term incubation with TGF-ß2. Hence, our findings indicate that the antiaging α-klotho plays a protective role against EMT and degeneration of the RPE, demonstrating the therapeutic potential for age-related retinal diseases, including the dry type of AMD.


Assuntos
Proteínas Klotho , MicroRNAs , Epitélio Pigmentado da Retina , Animais , Camundongos , Transição Epitelial-Mesenquimal , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta2/metabolismo , Proteínas Klotho/metabolismo
5.
Redox Biol ; 60: 102628, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36774778

RESUMO

Mitochondrial methionyl-tRNA synthetase (MARS2) canonically mediates the formation of fMet-tRNAifMet for mitochondrial translation initiation. Mitochondrial calcium uniporter (MCU) is a major gate of Ca2+ flux from cytosol into the mitochondrial matrix. We found that MARS2 interacts with MCU and stimulates mitochondrial Ca2+ influx. Methionine binding to MARS2 would act as a molecular switch that regulates MARS2-MCU interaction. Endogenous knockdown of MARS2 attenuates mitochondrial Ca2+ influx and induces p53 upregulation through the Ca2+-dependent CaMKII/CREB signaling. Subsequently, metabolic rewiring from glycolysis into pentose phosphate pathway is triggered and cellular reactive oxygen species level decreases. This metabolic switch induces inhibition of epithelial-mesenchymal transition (EMT) via cellular redox regulation. Expression of MARS2 is regulated by ZEB1 transcription factor in response to Wnt signaling. Our results suggest the mechanisms of mitochondrial Ca2+ uptake and metabolic control of cancer that are exerted by the key factors of the mitochondrial translational machinery and Ca2+ homeostasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Metionina tRNA Ligase/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 896334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663311

RESUMO

Background: Mitochondrial dysfunction with oxidative stress contributes to nonalcoholic fatty liver disease (NAFLD) progression. We investigated the steatosis predictive efficacy of a novel non-invasive diagnostic panel using metabolic stress biomarkers. Methods: Altogether, 343 subjects who underwent magnetic resonance imaging-based liver examinations from a population-based general cohort, and 41 patients enrolled in a biopsy-evaluated NAFLD cohort, participated in the development and validation groups, respectively. Serologic stress biomarkers were quantitated by enzyme-linked immunosorbent assay. Results: Multivariate regression showed that waist-to-hip ratio, fibroblast growth factor (FGF) 21, FGF19, adiponectin-to-leptin ratio, insulin, albumin, triglyceride, total-cholesterol, and alanine-aminotransferase were independent predictors of steatosis (rank-ordered by Wald). The area under receiver-operator characteristics curve [AUROC (95%CI)] of the metabolic stress index for steatosis (MSI-S) was 0.886 (0.85-0.92) and 0.825 (0.69-0.96) in development and validation groups, respectively. MSI-S had higher diagnostic accuracy (78.1%-81.1%) than other steatosis indices. MSI-S notably differentiated steatosis severities, while other indices showed less discrimination. Conclusion: MSI-S, as a novel non-invasive index, based on mitochondrial stress biomarker FGF21 effectively predicted steatosis. Furthermore, MSI-S may increase the population that could be excluded from further evaluation, reducing unnecessary invasive investigations more effectively than other indices.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Biomarcadores , Humanos , Mitocôndrias/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Fisiológico
7.
NPJ Regen Med ; 7(1): 33, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750775

RESUMO

Upon injury, the liver is capable of substantial regeneration from the original tissue until an appropriate functional size. The underlying mechanisms controlling the liver regeneration processes are not well elucidated. Previous studies have proposed that the transcription factor FoxO3 is involved in various liver diseases, but its exact role in the regulation of liver regeneration remains largely unclear. To directly test the detailed role of FoxO3 in liver regeneration, both a constitutive Albumin-Cre driver line and adeno-associated virus serotype 8 (AAV8)-Tbg-Cre (AAV-Cre)-injected adult FoxO3fl/fl mice were subjected to 70% partial hepatectomy (PH). Our data demonstrate that FoxO3 deletion accelerates liver regeneration primarily by limiting polyploidization and promoting the proliferation of hepatocytes during liver regeneration. RNA-seq analysis indicates that FoxO3 deficiency greatly alters the expression of gene sets associated with cell proliferation and apoptosis during liver regeneration. Chromatin immunoprecipitation-PCR (ChIP-PCR) and luciferase reporter assays reveal that FoxO3 promotes the expression of Nox4 but suppresses the expression of Nr4a1 in hepatocytes. AAV8 virus-mediated overexpression of Nox4 and knockdown of Nr4a1 significantly suppressed hepatocyte proliferation and liver regeneration in FoxO3-deficient mice. We demonstrate that FoxO3 negatively controls hepatocyte proliferation through Nox4 upregulation and Nr4a1 downregulation, thereby ensuring appropriate functional regeneration of the liver. Our findings provide novel mechanistic insight into the therapeutic mechanisms of FoxO3 in liver damage and repair.

8.
Cell Death Dis ; 13(6): 543, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35680871

RESUMO

The selective autophagy of damaged mitochondria is called mitophagy. Mitochondrial dysfunction, mitophagy, and apoptosis have been suggested to be interrelated in various human lung carcinomas. Leucine zipper EF-hand-containing transmembrane protein-1 (LETM1) was cloned in an attempt to identify candidate genes for Wolf-Hirschhorn syndrome. LETM1 plays a role in mitochondrial morphology, ion homeostasis, and cell viability. LETM1 has also been shown to be overexpressed in different human cancer tissues, including lung cancer. In the current study, we have provided clear evidence that LETM1 acts as an anchoring protein for the mitochondria-associated ER membrane (MAM). Fragmented mitochondria have been found in lung cancer cells with LETM1 overexpression. In addition, a reduction of mitochondrial membrane potential and significant accumulation of microtubule-associated protein 1 A/1B-light chain 3 punctate, which localizes with Red-Mito, was found in LETM1-overexpressed cells, suggesting that mitophagy is upregulated in these cells. Interestingly, glucose-regulated protein 78 kDa (GRP78; an ER chaperon protein) and glucose-regulated protein 75 kDa (GRP75) were posited to interact with LETM1 in the immunoprecipitated LETM1 of H460 cells. This interaction was enhanced in cells treated with carbonyl cyanide m-chlorophenylhydrazone, a chemical mitophagy inducer. Treatment of cells with honokiol (a GRP78 inhibitor) blocked LETM1-mediated mitophagy, and CRISPR/Cas9-mediated GRP75 knockout inhibited LETM1-induced autophagy. Thus, GRP78 interacts with LETM1. Taken together, these observations support the notion that the complex formation of LETM1/GRP75/GRP78 might be an important step in MAM formation and mitophagy, thus regulating mitochondrial quality control in lung cancer.


Assuntos
Proteínas de Ligação ao Cálcio , Neoplasias Pulmonares , Proteínas de Ligação ao Cálcio/metabolismo , Chaperona BiP do Retículo Endoplasmático , Glucose , Humanos , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
9.
Cell Death Differ ; 29(3): 540-555, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34556809

RESUMO

Developing methods to improve the regenerative capacity of somatic stem cells (SSCs) is a major challenge in regenerative medicine. Here, we propose the forced expression of LIN28A as a method to modulate cellular metabolism, which in turn enhances self-renewal, differentiation capacities, and engraftment after transplantation of various human SSCs. Mechanistically, in undifferentiated/proliferating SSCs, LIN28A induced metabolic reprogramming from oxidative phosphorylation (OxPhos) to glycolysis by activating PDK1-mediated glycolysis-TCA/OxPhos uncoupling. Mitochondria were also reprogrammed into healthy/fused mitochondria with improved functional capacity. The reprogramming allows SSCs to undergo cell proliferation more extensively with low levels of oxidative and mitochondrial stress. When the PDK1-mediated uncoupling was untethered upon differentiation, LIN28A-SSCs differentiated more efficiently with an increase of OxPhos by utilizing the reprogrammed mitochondria. This study provides mechanistic and practical approaches of utilizing LIN28A and metabolic reprogramming in order to improve SSCs utility in regenerative medicine.


Assuntos
Células-Tronco Adultas , Mitocôndrias , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Reprogramação Celular , Glicólise , Humanos , Mitocôndrias/metabolismo , Fosforilação Oxidativa
10.
Gut Liver ; 16(2): 171-189, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420934

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is accompanied by a complex and multifactorial pathogenesis with sequential progressions from inflammation to fibrosis and then to cancer. This heterogeneity interferes with the development of precise diagnostic and prognostic strategies for NAFLD. The current approach for the diagnosis of simple steatosis, steatohepatitis, and cirrhosis mainly consists of ultrasonography, magnetic resonance imaging, elastography, and various serological analyses. However, individual dry and wet biomarkers have limitations demanding an integrative approach for the assessment of disease progression. Here, we review diagnostic strategies for simple steatosis, steatohepatitis and hepatic fibrosis, followed by potential biomarkers associated with fat accumulation and mitochondrial stress. For mitochondrial stress indicators, we focused on fibroblast growth factor 21 (FGF21), growth differentiation factor 15 (GDF15), angiopoietin-related growth factor and mitochondrial-derived peptides. Each biomarker may not strongly indicate the severity of steatosis or steatohepatitis. Instead, multidimensional analysis of different groups of biomarkers based on pathogenic mechanisms may provide decisive diagnostic/prognostic information to develop a therapeutic plan for patients with NAFLD. For this purpose, mitochondrial stress indicators, such as FGF21 or GDF15, could be an important component in the multiplexed and contextual interpretation of NAFLD. Further validation of the integrative evaluation of mitochondrial stress indicators combined with other biomarkers is needed in the diagnosis/prognosis of NAFLD.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia
11.
Mol Cell Neurosci ; 113: 103628, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33962001

RESUMO

Facial nerves are frequently injured during cosmetic or other types of facial surgery. However, information on the genes involved in the damage and recovery of the facial nerves is limited. Here, we aimed to identify the genes affected by facial nerve injury and repair using next-generation sequencing. We established a rat axotomy model and a parallel epineurial neurorrhaphy model, in which gene expression was analyzed from 3 days to 8 weeks after surgery. We discovered that ARRB1, SGK1, and GSK3B genes associated with neuronal cell death were upregulated in the axotomy model. In contrast, MFRP, MDK, and ACE genes involved in neural recovery and regeneration exhibited higher expression in the neurorrhaphy model. In the present study, the analysis of the big data obtained from the next-generation sequencing (RNA-seq) technology reveals that the expression of genes involved in neuronal cell death is induced during nerve damage, and those associated with neural recovery are more abundantly expressed during repair processes. These results are considered to be useful for the establishment of the treatment of related diseases and basic research in various neuroscience fields by utilizing damage and recovery mechanism of facial nerves.


Assuntos
Traumatismos do Nervo Facial/genética , Regeneração Nervosa/genética , Neurônios/metabolismo , Transcriptoma , Animais , Morte Celular , Traumatismos do Nervo Facial/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Masculino , Midkina/genética , Midkina/metabolismo , Neurônios/fisiologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
12.
Pflugers Arch ; 473(4): 647-658, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33386992

RESUMO

αKlotho is a type 1 transmembrane anti-aging protein. αKlotho-deficient mice have premature aging phenotypes and an imbalance of ion homeostasis including Ca2+ and phosphate. Soluble αKlotho is known to regulate multiple ion channels and growth factor-mediated phosphoinositide-3-kinase (PI3K) signaling. Store-operated Ca2+ entry (SOCE) mediated by pore-forming subunit Orai1 and ER Ca2+ sensor STIM1 is a ubiquitous Ca2+ influx mechanism and has been implicated in multiple diseases. However, it is currently unknown whether soluble αKlotho regulates Orai1-mediated SOCE via PI3K-dependent signaling. Among the Klotho family, αKlotho downregulates SOCE while ßKlotho or γKlotho does not affect SOCE. Soluble αKlotho suppresses serum-stimulated SOCE and Ca2+ release-activated Ca2+ (CRAC) channel currents. Serum increases the cell-surface abundance of Orai1 via stimulating vesicular exocytosis of the channel. The serum-stimulated SOCE and cell-surface abundance of Orai1 are inhibited by the preincubation of αKlotho protein or PI3K inhibitors. Moreover, the inhibition of SOCE and cell-surface abundance of Orai1 by pretreatment of brefeldin A or tetanus toxin or PI3K inhibitors prevents further inhibition by αKlotho. Functionally, we further show that soluble αKlotho ameliorates serum-stimulated SOCE and cell migration in breast and lung cancer cells. These results demonstrate that soluble αKlotho downregulates SOCE by inhibiting PI3K-driven vesicular exocytosis of the Orai1 channel and contributes to the suppression of SOCE-mediated tumor cell migration.


Assuntos
Sinalização do Cálcio , Proteínas Klotho/metabolismo , Proteína ORAI1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Células HEK293 , Humanos , Proteínas Klotho/genética , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo
13.
Sci Rep ; 10(1): 20911, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262411

RESUMO

We propose a novel method, the epinephrine compression method (Epi-pledget), as a hemostasis method for ovarian cystectomy. A total of 179 patients undergoing laparoscopic ovarian cystectomy with stripping were randomly allocated into three groups: the bipolar coagulation group, the Epi-pledget group, and the coagulation after Epi-pledget (Epi & Coagulation) group. Serum anti-Müllerian hormone (AMH) levels and antral follicle count (AFC) by ultrasonography were measured to determine the preservation of ovarian function. To evaluate the postoperative ovarian cellular proliferative activity and tissue damage in a mouse model, we operated on the ovaries of mice with an artificial incision injury and applied two hemostatic methods: coagulation and Epi-pledget. Eight weeks after surgery, the AMH rate significantly decreased in the bipolar coagulation group compared with the Epi-pledget group. The AFC decline rate was also significantly greater in the coagulation group than the Epi-pledget group. Specifically, patients with endometrioma had a significantly greater decline of serum AMH in the coagulation group than the Epi-pledget group. In a histopathological analysis in mice, the Epi-pledget group showed ameliorated fibrotic changes and necrotic findings in the injured lesion compared with the bipolar coagulation group. The Epi-pledget method for ovarian stripping has an additional benefit of maximizing the preservation of the ovarian reserve, especially for the endometriotic ovarian cyst type.


Assuntos
Epinefrina/farmacologia , Reserva Ovariana/efeitos dos fármacos , Ovário/cirurgia , Adulto , Hormônio Antimülleriano/sangue , Coagulação Sanguínea , Perda Sanguínea Cirúrgica/prevenção & controle , Feminino , Hemostasia , Humanos , Laparoscopia/efeitos adversos , Ovário/fisiopatologia , Adulto Jovem
14.
Stem Cell Res Ther ; 11(1): 467, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148318

RESUMO

Although mitochondrial functions are essential for cell survival, their critical roles in stem cell fate, including proliferation, differentiation, and senescence, remain elusive. Ginsenoside Rg3 exhibits various biological activities and reportedly increases mitochondrial biogenesis and respiration. Herein, we observed that Rg3 increased proliferation and suppressed senescence of human bone marrow-derived mesenchymal stem cells. Osteogenic, but not adipogenic, differentiation was facilitated by Rg3 treatment. Rg3 suppressed reactive oxygen species production and upregulated mitochondrial biogenesis and antioxidant enzymes, including superoxide dismutase. Consistently, Rg3 strongly augmented basal and ATP synthesis-linked respiration with high spare respiratory capacity. Rg3 treatment elevated cytosolic Ca2+ concentration contributing to mitochondrial activation. Reduction of intracellular or extracellular Ca2+ levels strongly inhibited Rg3-induced activation of mitochondrial respiration and biogenesis. Taken together, Rg3 enhances capabilities of mitochondrial and antioxidant functions mainly through a Ca2+-dependent pathway, which improves the proliferation and differentiation potentials and prevents the senescence of human mesenchymal stem cells.


Assuntos
Células-Tronco Mesenquimais , Biogênese de Organelas , Diferenciação Celular , Humanos , Espécies Reativas de Oxigênio , Células-Tronco
15.
Am J Physiol Heart Circ Physiol ; 319(6): H1302-H1312, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095057

RESUMO

Hyperphosphatemia is the primary risk factor for vascular calcification, which is closely associated with cardiovascular morbidity and mortality. Recent evidence showed that oxidative stress by high inorganic phosphate (Pi) mediates calcific changes in vascular smooth muscle cells (VSMCs). However, intracellular signaling responsible for Pi-induced oxidative stress remains unclear. Here, we investigated molecular mechanisms of Pi-induced oxidative stress related with intracellular Ca2+ ([Ca2+]i) disturbance, which is critical for calcification of VSMCs. VSMCs isolated from rat thoracic aorta or A7r5 cells were incubated with high Pi-containing medium. Extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin were activated by high Pi that was required for vascular calcification. High Pi upregulated expressions of type III sodium-phosphate cotransporters PiT-1 and -2 and stimulated their trafficking to the plasma membrane. Interestingly, high Pi increased [Ca2+]i exclusively dependent on extracellular Na+ and Ca2+ as well as PiT-1/2 abundance. Furthermore, high-Pi induced plasma membrane depolarization mediated by PiT-1/2. Pretreatment with verapamil, as a voltage-gated Ca2+ channel (VGCC) blocker, inhibited Pi-induced [Ca2+]i elevation, oxidative stress, ERK activation, and osteogenic differentiation. These protective effects were reiterated by extracellular Ca2+-free condition, intracellular Ca2+ chelation, or suppression of oxidative stress. Mitochondrial superoxide scavenger also effectively abrogated ERK activation and osteogenic differentiation of VSMCs by high Pi. Taking all these together, we suggest that high Pi activates depolarization-triggered Ca2+ influx via VGCC, and subsequent [Ca2+]i increase elicits oxidative stress and osteogenic differentiation. PiT-1/2 mediates Pi-induced [Ca2+]i overload and oxidative stress but in turn, PiT-1/2 is upregulated by consequences of these alterations.NEW & NOTEWORTHY The novel findings of this study are type III sodium-phosphate cotransporters PiT-1 and -2-dependent depolarization by high Pi, leading to Ca2+ entry via voltage-gated Ca2+ channels in vascular smooth muscle cells. Cytosolic Ca2+ increase and subsequent oxidative stress are indispensable for osteogenic differentiation and calcification. In addition, plasmalemmal abundance of PiT-1/2 relies on Ca2+ overload and oxidative stress, establishing a positive feedback loop. Identification of mechanistic components of a vicious cycle could provide novel therapeutic strategies against vascular calcification in hyperphosphatemic patients.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Hiperfosfatemia/induzido quimicamente , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatos/toxicidade , Calcificação Vascular/induzido quimicamente , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Hiperfosfatemia/metabolismo , Hiperfosfatemia/patologia , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos Sprague-Dawley , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
16.
Int J Stem Cells ; 13(3): 394-403, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32840228

RESUMO

BACKGROUND AND OBJECTIVES: Autologous or allogeneic bone marrow-derived mesenchymal stem cells (BMSCs) have been applied in clinical trials to treat liver disease. However, only a few studies are comparing the characteristics of autologous MSCs from patients and allogeneic MSCs from normal subjects. METHODS AND RESULTS: We compared the characteristics of BMSCs (BCs and BPs, respectively) isolated from six healthy volunteers and six patients with cirrhosis. In passage 3 (P3), senescent population and expression of p53 and p21 were slightly higher in BPs, but the average population doubling time for P3-P5 in BPs was approximately 65.3±11.1 h, which is 18.4 h shorter than that in BCs (83.7±9.2 h). No difference was observed in the expression of CD73, CD90, or CD105 between BCs and BPs. Adipogenic differentiation slightly increased in BCs, but the expression levels of leptin, peroxisome proliferator-activated receptor γ, and CCAAT-enhancer-binding protein α did not vary between differentiated BCs and BPs. While ATP and reactive oxygen species levels were slightly lower in BPs, mitochondrial membrane potential, oxygen consumption rate, and expression of mitochondria-related genes such as cytochrome c oxidase 1 were not significantly different between BCs and BPs. CONCLUSIONS: Taken together, there are marginal differences in the proliferation, differentiation, and mitochondrial activities of BCs and BPs, but both BMSCs from patients with cirrhosis and healthy volunteers show comparable characteristics.

17.
Aging Cell ; 18(5): e12990, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264342

RESUMO

Paraquat (PQ) promotes cell senescence in brain tissue, which contributes to Parkinson's disease. Furthermore, PQ induces heart failure and oxidative damage, but it remains unknown whether and how PQ induces cardiac aging. Here, we demonstrate that PQ induces phenotypes associated with senescence of cardiomyocyte cell lines and results in cardiac aging-associated phenotypes including cardiac remodeling and dysfunction in vivo. Moreover, PQ inhibits the activation of Forkhead box O3 (FoxO3), an important longevity factor, both in vitro and in vivo. We found that PQ-induced senescence phenotypes, including proliferation inhibition, apoptosis, senescence-associated ß-galactosidase activity, and p16INK4a expression, were significantly enhanced by FoxO3 deficiency in cardiomyocytes. Notably, PQ-induced cardiac remolding, apoptosis, oxidative damage, and p16INK4a expression in hearts were exacerbated by FoxO3 deficiency. In addition, both in vitro deficiency and in vivo deficiency of FoxO3 greatly suppressed the activation of antioxidant enzymes including catalase (CAT) and superoxide dismutase 2 (SOD2) in the presence of PQ, which was accompanied by attenuation in cardiac function. The direct in vivo binding of FoxO3 to the promoters of the Cat and Sod2 genes in the heart was verified by chromatin immunoprecipitation (ChIP). Functionally, overexpression of Cat or Sod2 alleviated the PQ-induced senescence phenotypes in FoxO3-deficient cardiomyocyte cell lines. Overexpression of FoxO3 and CAT in hearts greatly suppressed the PQ-induced heart injury and phenotypes associated with aging. Collectively, these results suggest that FoxO3 protects the heart against an aging-associated decline in cardiac function in mice exposed to PQ, at least in part by upregulating the expression of antioxidant enzymes and suppressing oxidative stress.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Proteína Forkhead Box O3/metabolismo , Paraquat/antagonistas & inibidores , Substâncias Protetoras/metabolismo , Regulação para Cima , Envelhecimento/efeitos dos fármacos , Animais , Catalase/genética , Catalase/metabolismo , Coração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Paraquat/farmacologia , Fenótipo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos
18.
FASEB J ; 33(7): 8588-8599, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022353

RESUMO

Deregulation of Ca2+ signaling has been regarded as one of the key features of cancer progression. Lysine-deficient protein kinase 1 (WNK1), a major regulator of renal ion transport, regulates Ca2+ signaling through stimulating the phosphatidylinositol 4-kinase IIIα (PI4KIIIα) to activate Gαq-coupled receptor/PLC-ß signaling. However, the contribution of WNK1-mediated Ca2+ signaling in the development of clear-cell renal-cell carcinoma (ccRCC) is yet unknown. We found that the canonical transient receptor potential channel (TRPC)6 was widely expressed in ccRCC tissues and functioned as a primary Ca2+ influx mechanism. We further identified that the expressions of WNK1, PI4KIIIα, TRPC6, and the nuclear factor of activated T cells cytoplasmic 1 (NFATc1) were elevated in the tumor tissues compared with the adjacent normal tissues. WNK1 expression was directly associated with the nuclear grade of ccRCC tissues. Functional experiments showed that WNK1 activated TRPC6-mediated Ca2+ influx and current by stimulating PI4KIIIα. Notably, the inhibition of WNK1-mediated TRPC6 activation and its downstream substrate calcineurin attenuated NFATc1 activation and the subsequent migration and proliferation of ccRCC. These findings revealed a novel perspective of WNK1 signaling in targeting the TRPC6-NFATc1 pathway as a therapeutic potential for renal-cell carcinoma.-Kim, J.-H., Hwang, K.-H., Eom, M., Kim, M., Park, E. Y., Jeong, Y., Park, K.-S., Cha, S.-K. WNK1 promotes renal tumor progression by activating TRPC6-NFAT pathway.


Assuntos
Rim/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Canal de Cátion TRPC6/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Células HEK293 , Humanos , Rim/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia
19.
EBioMedicine ; 41: 134-145, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30755372

RESUMO

BACKGROUND: c-Src is a driver oncogene well-known for tumorigenic signaling, but little for metabolic function. Previous reports about c-Src regulation of glucose metabolism prompted us to investigate its function in other nutrient modulation, particularly in lipid metabolism. METHODS: Oil-red O staining, cell growth assay, and tumor volume measurement were performed to determine lipid amount and growth inhibitory effect of treatments in lung cancer cells and xenograft model. Gene expression was evaluated by immunoblotting and relative RT-PCR. Transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) was assessed by luciferase assay. Reactive oxygen species (ROS) was measured using ROS sensing dye. Oxygen consumption rate was evaluated by Seahorse XF Mito Stress Test. Clinical relevance of candidate proteins was examined using patient samples and public database analysis. FINDINGS: Inhibition of Src induced lipolysis and increased intracellular ROS. Src inhibition derepressed PPARγ transcriptional activity leading to induced expression of lipolytic gene fatty acid binding protein (FABP) 4 which accompanies reduced lipid droplets and decreased tumor growth. The reverse correlation of Src and FABP4 was confirmed in pair-matched lung cancer patient samples, and further analysis using public datasets revealed upregulation of lipolytic genes is associated with better prognosis of cancer patients. INTERPRETATION: This study provides an insight of how oncogenic factor Src concurrently regulates both cellular signaling pathways and metabolic plasticity to drive cancer progression. FUND: National Research Foundation of Korea and Korea Health Industry Development Institute.


Assuntos
Lipólise , Neoplasias Pulmonares/metabolismo , Quinases da Família src/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proteínas de Ligação a Ácido Graxo/metabolismo , Células HEK293 , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , PPAR gama/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Quinases da Família src/genética , Quinases da Família src/metabolismo
20.
Neurotoxicology ; 70: 12-18, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367900

RESUMO

BACKGROUND: Among the adverse health effects of exposure to pesticides, an association with diabetes has been reported. However, there is a lack of epidemiologic studies on the health effects of exposure to pesticides, particularly investigating the association between occupational pesticide exposure and diabetes prevalence. PURPOSE: The present study examined the association between pesticide exposure and prevalence of diabetes in a rural population in Korea. METHODS: This cross-sectional study used data from the Korea Farmers Cohort study, and included 2559 participants in the baseline survey between November 2005 and January 2008. We performed a clinical examination including blood sampling and assessed data on diabetes diagnosis, demographics, and pesticide exposure. Logistic regression was performed to evaluate the association between pesticide exposure and diabetes prevalence, adjusting for age, sex, monthly income, and marital status. In addition, a stratified analysis by body mass index (BMI) was conducted, with two categories: normal weight (<25 kg/m2) and overweight or obese (≥25 kg/m2). RESULTS: At baseline, the prevalence of diabetes was 9.30%. Pesticide exposure was associated with the risk of diabetes after adjustment for covariates. In the analysis stratified by BMI, all the variables related to pesticide exposure were associated with prevalence of diabetes in the overweight or obese group, whereas no significant association was found in the normal weight group. CONCLUSION: Exposure to pesticides was associated with diabetes, and this association was stronger in overweight or obese individuals than in normal weight individuals. Further longitudinal studies that consider information on BMI are necessary.


Assuntos
Agricultura/tendências , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/epidemiologia , Exposição Ocupacional/efeitos adversos , Praguicidas/efeitos adversos , População Rural/tendências , Adulto , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sobrepeso/diagnóstico , Sobrepeso/epidemiologia , Estudos Prospectivos , República da Coreia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA