Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38768569

RESUMO

INTRODUCTION: Diesel particulate matter (DPM) emitted from diesel engines is a major source of air pollutants. DPM is composed of elemental carbon, which adsorbs organic compounds including toxic polycyclic aromatic hydrocarbons (PAH). The skin, as well as airways, are directly exposed to DPM, and association of atopic dermatitis, psoriasis flares, and premature skin aging with air pollutant levels has been documented. In skin, the permeation of DPM and DPM-adsorbed compounds is primarily blocked by the epidermal permeability barrier deployed in the stratum corneum. Depending upon the integrity of this barrier, certain amounts of DPM and DPM-adsorbed compounds can permeate into the skin. However, this permeation into human skin has not been completely elucidated. METHODS: We assessed the permeation of PAHs (adsorbed to DPM) into skin using ex vivo normal (barrier-competent) organ-cultured human skin after application of DPM. Two major PAHs, 2-methylnaphthalene and triphenylene, and a carcinogenic polycyclic aromatic hydrocarbon (PAH), benzo(a)pyrene, all found in DPM, were measured in the epidermis and dermis using liquid chromatography electrospray ionization tandem mass spectrometry. In addition, we investigated whether a topical formulation can attenuate the permeation of DPM into skin. RESULTS: 2-methylnaphthalene, triphenylene and benzo(a)pyrene were recovered from the epidermis. Although these PAH were also detected in the dermis after DPM application, these PAH levels were significantly lower than those found in the epidermis. We also demonstrated that a topical formulation that has the ability to form more uniform membrane structures can significantly suppress the permeation of PAH adsorbed to DPMs into the skin. CONCLUSION: Toxic compounds adsorbed by DPM can permeate even barrier-competent skin. Hence, barrier-compromised skin, such as in atopic dermatitis, psoriasis and xerosis, is even more vulnerable to air pollutants. A properly formulated topical mixture that forms certain membrane structures on the skin surface can effectively prevent permeation of exogenous substances, including DPM, into skin.

2.
Eur Arch Otorhinolaryngol ; 281(2): 731-735, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37555931

RESUMO

PURPOSE: This study is to evaluate the duration of facial nerve enhancement in gadolinium-enhanced temporal bone MRI after the onset of acute facial palsy. METHODS: Gd-enhanced MRI imagines were examined in 13 patients with idiopathic acute facial palsy within 14 days after the onset. The degree of facial nerve function was measured according to the House-Brackmann (H-B) grading system at their first visit at outpatient clinic. The follow-up MRI was taken about 16.5 months (7-24 months) after onset of disease. The degree of facial nerve enhancement was measured with signal intensity (SI) which was quantitatively analyzed using the region-of-interest (ROI) measurements for each segment of the facial nerve. SI was statistically analyzed by comparing SI values of contralateral site and ipsilateral site using the paired t test with SPSS program. RESULTS: The gadolinium enhancement was statistically increased at labyrinthine segment and geniculate ganglion area of facial nerve at initial temporal bone MRI. The gadolinium enhancement was statistically decreased at all the segments of facial nerve except tympanic segment (p < 0.05) at follow-up MRI. CONCLUSIONS: The facial nerve enhancement in Gd-enhanced MRI images prolonged more than 21 months of the onset. The newly developed pathologic lesions of acute facial palsy especially occur at the site of labyrinthine and geniculate ganglion.


Assuntos
Paralisia de Bell , Paralisia Facial , Humanos , Paralisia Facial/diagnóstico por imagem , Paralisia Facial/etiologia , Paralisia Facial/patologia , Nervo Facial/diagnóstico por imagem , Nervo Facial/patologia , Meios de Contraste , Gadolínio , Paralisia de Bell/diagnóstico por imagem , Osso Temporal/diagnóstico por imagem , Osso Temporal/patologia , Imageamento por Ressonância Magnética/métodos
3.
J Natl Cancer Inst ; 115(11): 1404-1419, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195421

RESUMO

BACKGROUND: We investigated the role of A2B-adenosine receptor in regulating immunosuppressive metabolic stress in the tumor microenvironment. Novel A2B-adenosine receptor antagonist PBF-1129 was tested for antitumor activity in mice and evaluated for safety and immunologic efficacy in a phase I clinical trial of patients with non-small cell lung cancer. METHODS: The antitumor efficacy of A2B-adenosine receptor antagonists and their impact on the metabolic and immune tumor microenvironment were evaluated in lung, melanoma, colon, breast, and epidermal growth factor receptor-inducible transgenic cancer models. Employing electron paramagnetic resonance, we assessed changes in tumor microenvironment metabolic parameters, including pO2, pH, and inorganic phosphate, during tumor growth and evaluated the immunologic effects of PBF-1129, including its pharmacokinetics, safety, and toxicity, in patients with non-small cell lung cancer. RESULTS: Levels of metabolic stress correlated with tumor growth, metastasis, and immunosuppression. Tumor interstitial inorganic phosphate emerged as a correlative and cumulative measure of tumor microenvironment stress and immunosuppression. A2B-adenosine receptor inhibition alleviated metabolic stress, downregulated expression of adenosine-generating ectonucleotidases, increased expression of adenosine deaminase, decreased tumor growth and metastasis, increased interferon γ production, and enhanced the efficacy of antitumor therapies following combination regimens in animal models (anti-programmed cell death 1 protein vs anti-programmed cell death 1 protein plus PBF-1129 treatment hazard ratio = 11.74 [95% confidence interval = 3.35 to 41.13], n = 10, P < .001, 2-sided F test). In patients with non-small cell lung cancer, PBF-1129 was well tolerated, with no dose-limiting toxicities; demonstrated pharmacologic efficacy; modulated the adenosine generation system; and improved antitumor immunity. CONCLUSIONS: Data identify A2B-adenosine receptor as a valuable therapeutic target to modify metabolic and immune tumor microenvironment to reduce immunosuppression, enhance the efficacy of immunotherapies, and support clinical application of PBF-1129 in combination therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptor A2B de Adenosina/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Terapia de Imunossupressão , Adenosina/metabolismo , Fosfatos , Linhagem Celular Tumoral
4.
Angew Chem Int Ed Engl ; 62(23): e202300704, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988016

RESUMO

Despite the widespread success in the functionalization of C(sp2 )-H bonds, the deliberate functionalization of C(sp3 )-H bonds in a highly site- and stereoselective manner remains a longstanding challenge. Herein, we report an iridium/aluminum cooperative catalytic system that enables the ß-selective C-H borylation of saturated cyclic amines and lactams. Furthermore, we have accomplished an enantioselective variant using binaphthol-derived chiral aluminum catalysts to forge C-B bonds with high levels of stereocontrol. Computational studies suggest that the formation of a Lewis pair with the substrates is crucial to lower the energy of the transition state for the rate-determining reductive elimination step.

5.
J Ethnopharmacol ; 301: 115848, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36272492

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Morus alba L. has long been used for beauty in many Asian countries and regions, including anti-aging and hyperpigmentation. AIM OF THE STUDY: This study aimed at the inhibitory effect of Morus alba L. root on melanogenesis in B16F10 melanoma cells and the mechanism involved. MATERIALS AND METHODS: This study evaluated the anti-melanogenic effect of Morus alba L. root extract (MAR) on B16F10 melanoma cells by assessing cell viability, melanin accumulation, cellular tyrosinase activity, intra/inter-cellular S1P levels, cellular S1P-related metabolic enzyme activity, and western blot analysis. In addition, the potential S1P lyase (S1PL) inhibitory constituents in MAR were identified by LC-MS/MS. RESULTS: Without affecting the viability of B16F10 melanoma cells, MAR inhibited intracellular tyrosinase activity in a dose-dependent manner, thereby reducing the accumulation of melanin. MAR also downregulated the expression level of MITF via activating the ERK signaling pathway. Furthermore, MAR increased the intra/inter-cellular S1P by inhibiting S1PL. Several compounds with inhibitory S1PL activity have been identified in MAR, such as mulberroside A and oxyresveratrol. CONCLUSIONS: The anti-melanogenic effects of MAR mainly involve promoting MITF degradation mediated via S1P-S1PR3-ERK signaling through increasing cellular S1P levels by inhibiting S1PL activity.


Assuntos
Melanoma Experimental , Melanoma , Morus , Animais , Melaninas/metabolismo , Monofenol Mono-Oxigenase , Cromatografia Líquida , Espectrometria de Massas em Tandem , Transdução de Sinais , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo
6.
Nanotechnology ; 34(1)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222531

RESUMO

Electronic devices composed of semiconducting two-dimensional (2D) materials and ultrathin 2D metallic electrode materials, accompanying synergistic interactions and extraordinary properties, are becoming highly promising for future flexible and transparent electronic and optoelectronic device applications. Unlike devices with bulk metal electrode and 2D channel materials, devices with ultrathin 2D electrode and 2D channel are susceptible to chemical reactions in both channel and electrode surface due to the high surface to volume ratio of the 2D structures. However, so far, the effect of doping was primary concerned on the channel component, and there is lack of understanding in terms of how to modulate electrical properties of devices by engineering electrical properties of both the metallic electrode and the semiconducting channel. Here, we propose the novel, one-pot doping of the field-effect transistor (FET) based on 2D molybdenum disulfide (MoS2) channel and ultrathin copper sulfide (CuS) electrodes under mild iodine gas environment at room temperature, which simultaneously modulates electrical properties of the 2D MoS2channel and 2D CuS electrode in a facile and cost-effective way. After one-pot iodine doping, effective p-type doping of the channel and electrode was observed, which was shown through decreased off current level, improvedIon/Ioffratio and subthreshold swing value. Our results open up possibility for effectively and conveniently modulating electrical properties of FETs made of various 2D semiconductors and ultrathin contact materials without causing any detrimental damage.

7.
J Cosmet Dermatol ; 21(9): 3779-3786, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35699355

RESUMO

BACKGROUND: The use of hyaluronic acid (HA) fillers for medical aesthetic purposes is increasing worldwide. Nonetheless, adverse events do occur because of patient-specific issues, injection technique, or product factors. It would be mandatory to consider cultural and anatomical features of Asians in preventing and managing the complications of HA injections. METHODS: Literature search of studies looking at current evidence and guidelines on the management of complications following HA filler injections in Asian patients was conducted. This was followed by an expert group discussion that was convened to reach consensus recommendations on the best clinical practices. RESULTS: The expert panel provided specific recommendations focusing on the safe use of soft tissue fillers in Asian patients, including early identification of adverse events and how to prevent and comprehensively manage these outcomes. CONCLUSIONS: Here, we provide consensus statements of Asian experts in dermatology, plastic surgery, ophthalmology, and aesthetic medicine mainly focusing on AEs with higher risk for Asians and can be used to guide physicians in treating Asian population.


Assuntos
Técnicas Cosméticas , Preenchedores Dérmicos , Povo Asiático , Técnicas Cosméticas/efeitos adversos , Preenchedores Dérmicos/efeitos adversos , Estética , Humanos , Ácido Hialurônico/efeitos adversos , Injeções
8.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35455428

RESUMO

Air pollutants contribute to the development of diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary cancer, cardiovascular problems, and some skin diseases. We recently found that a major air pollutant, diesel particulate matter (DPM), induces apoptosis in human keratinocytes by increasing a proapoptotic lipid mediator, ceramide. DPM activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), which stimulates sphingomyelinase, leading to an increased conversion of sphingomyelin to ceramide. Interestingly, we characterized that although NOX is a reactive oxygen species (ROS) generator, the activation of sphingomyelinases by NOX is an ROS-independent mechanism. A Korean weed, prostrate spurge Euphorbia supina Rafin (ESR), has been used for centuries as a folk medicine to treat bronchitis, hepatitis, hemorrhage, and skin inflammation. Flavonoids, terpenes and tannins are enriched in ESR, and although ESR has proven antioxidative activity, its biological activities are largely unknown. Here, we investigate whether and how ESR protects keratinocytes against DPM-mediated apoptosis. We found that ESR-extracts (ESR-Ex) protect keratinocytes from DPM-induced apoptosis by inhibiting NOX activation in keratinocytes in response to DPM. We also demonstrated that ESR-Ex suppresses NOX activation via a blockage of the aryl hydrocarbon receptor (AhR) activation-mediated transcription of neutrophil cytosolic factor 1 (NCF1)/p47phox, a subunit of NOX. Our study reveals previously uncharacterized biological activity of ESR-Ex; i.e., its inhibition of Ahr and NOX activation. Thus, because the inhibition of NOX has already been developed to treat NOX-mediated diseases, including various types of cardiovascular diseases and cancers, initiated by air pollutants and because AhR activation contributes to the development of chronic inflammatory diseases, our study provides further advantages for the medical use of ESR.

9.
Biomol Ther (Seoul) ; 30(1): 72-79, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873073

RESUMO

Licochalcone H (LCH) is a phenolic compound synthetically derived from licochalcone C (LCC) that exerts anticancer activity. In this study, we investigated the anticancer activity of LCH in human skin cancer A375 and A431 cells. The 3-(4,5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay was used to evaluate the antiproliferative activity of LCH. Cell cycle distribution and the induction of apoptosis were analyzed by flow cytometry. Western blotting assays were performed to detect the levels of proteins involved in cell cycle progression, apoptosis, and the JAK2/STAT3 signaling pathway. LCH inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay revealed that LCH induced apoptosis, and the LCH-induced apoptosis was accompanied by cell cycle arrest in the G1 phase. Western blot analysis showed that the phosphorylation of JAK2 and STAT3 was decreased by treatment with LCH. The inhibition of the JAK2/STAT3 signaling pathway by pharmacological inhibitors against JAK2/STAT3 (cryptotanshinone (CTS) and S3I-201) simulated the antiproliferative effect of LCH suggesting that LCH induced apoptosis by modulating JAK2/STAT3 signaling.

10.
Molecules ; 26(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576944

RESUMO

Sulforaphane (SFN), a naturally occurring isothiocyanate, has received significant attention because of its ability to modulate multiple biological functions, including anti-carcinogenic properties. However, currently available analytical methods based on high-performance liquid chromatography (HPLC)-UV/Vis for the quantification of SFN have a number of limitations, e.g., low UV absorbance, sensitivity, or accuracy, due to the lack of a chromophore for spectrometric detection. Therefore, we here employed the analytical derivatization procedure using 2-naphthalenethiol (2-NT) to improve the detectability of SFN, followed by HPLC separation and quantification with UV/Vis detection. The optimal derivatization conditions were carried out with 0.3 M of 2-NT in acetonitrile with phosphate buffer (pH 7.4) by incubation at 37 °C for 60 min. Separation was performed in reverse phase mode using a Kinetex C18 column (150 mm × 4.6 mm, 5 µm) at a flow rate of 1 mL/min, with 0.1% formic acid as a mobile phase A, and acetonitrile/0.1% formic acid solution as a mobile phase B with a gradient elution, with a detection wavelength of 234 nm. The method was validated over a linear range of 10-2000 ng/mL with a correlation of determination (R2) > 0.999 using weighted linear regression analysis. The intra- and inter-assay accuracy (% of nominal value) and precision (% of relative standard deviation) were within ±10 and <15%, respectively. Moreover, the specificity, recovery, matrix effect, process efficiency, and short-term and long-term stabilities of this method were within acceptable limits. Finally, we applied this method for studying in vivo pharmacokinetics (PK) following oral administration of SFN at doses of 10 or 20 mg/kg. The Cmax (µg/mL), Tmax (hour), and AUC0-12h (µg·h/mL) of each oral dose were 0.92, 1.99, and 4.88 and 1.67, 1.00, and 9.85, respectively. Overall, the proposed analytical method proved to be reliable and applicable for quantification of SFN in biological samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Isotiocianatos/sangue , Naftalenos/química , Compostos de Sulfidrila/química , Sulfóxidos/sangue , Animais , Calibragem , Feminino , Isotiocianatos/química , Isotiocianatos/farmacocinética , Limite de Detecção , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sulfóxidos/química , Sulfóxidos/farmacocinética , Raios Ultravioleta
11.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200222

RESUMO

Collagen hydrolysates have been suggested as a favorable antiaging modality in skin photoaged by persistent exposure to ultraviolet radiation (UV). The current study evaluated the beneficial effect of collagen hydrolysates (fsCH) extracted from Pangasius hypophthalmus fish skin on wrinkle formation and moisture preservation in dorsal skin of hairless mice challenged with UV-B. Inter-comparative experiments were conducted for anti-photoaging among fsCH, retinoic acid (RA), N-acetyl-D-glucosamine (NAG), and glycine-proline-hydroxyproline (GPH). Treating human HaCaT keratinocytes with 100-200 µg/mL fsCH reciprocally ameliorated the expression of aquaporin 3 (AQP3) and CD44 deranged by UV-B. The UV-B-induced deep furrows and skin thickening were improved in parched dorsal skin of mice supplemented with 206-412 mg/kg fsCH as well as RA and GPH. The UV-B irradiation enhanced collagen fiber loss in the dorsal dermis, which was attenuated by fsCH through enhancing procollagen conversion to collagen. The matrix metalloproteinase expression by UV-B in dorsal skin was diminished by fsCH, similar to RA and GPH, via blockade of collagen degradation. Supplementing fsCH to UV-B-irradiated mice decreased transepidermal water loss in dorsal skin with reduced AQP3 level and restored keratinocyte expression of filaggrin. The expression of hyaluronic acid synthase 2 and hyaluronidase 1 by UV-B was remarkably ameliorated with increased production of hyaluronic acid by treating fsCH to photoaged mice. Taken together, fsCH attenuated photoaging typical of deep wrinkles, epidermal thickening, and skin water loss, like NAG, RA, or GPH, through inhibiting collagen destruction and epidermal barrier impairment.


Assuntos
Colágeno/farmacologia , Proteínas Alimentares/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Animais , Proteínas Filagrinas , Masculino , Camundongos , Camundongos Pelados , Pele/patologia , Pele/efeitos da radiação , Envelhecimento da Pele/patologia , Envelhecimento da Pele/efeitos da radiação , Dermatopatias/etiologia , Dermatopatias/patologia
12.
Lipids ; 56(3): 345-353, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33378788

RESUMO

Borage oil [BO: 40.9% linoleic acid (LNA) and 24.0% γ-linolenic acid (GLA)] reverses disrupted epidermal lipid barrier in essential fatty acid deficiency (EFAD). We determined the effects of BO on lamellar body (LB) content and LNA and GLA incorporation into epidermal ceramide 1 (CER1) and epidermal ceramide 2 (CER2), major barrier lipids. EFAD was induced in guinea pigs by a diet of 6% hydrogenated coconut oil (HCO) for 10 weeks (group HCO) or 8 weeks followed by 6% BO for 2 weeks (group HCO + BO). LB content and LNA and GLA incorporation into CER1 were higher in group HCO + BO than in group HCO. Small but significant levels of LNA, GLA, and their C20-metabolized fatty acids [dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA)] were incorporated into CER2, where ARA was detected at a level lower than LNA, but DGLA incorporation exceeded that for GLA in group HCO + BO. Dietary BO enhanced LB content and differential incorporation of GLA into CER1 and DGLA into CER2.


Assuntos
Ceramidas/metabolismo , Óleo de Coco/efeitos adversos , Epiderme/química , Corpos Lamelares/metabolismo , Óleos de Plantas/administração & dosagem , Ácido gama-Linolênico/administração & dosagem , Animais , Cromatografia Líquida , Cobaias , Hidrogenação , Corpos Lamelares/efeitos dos fármacos , Ácido Linoleico/metabolismo , Masculino , Óleos de Plantas/farmacologia , Espectrometria de Massas em Tandem , Ácido gama-Linolênico/metabolismo , Ácido gama-Linolênico/farmacologia
13.
Cells ; 9(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604872

RESUMO

The effector function of tumor-infiltrated CD4+ T cells is readily suppressed by many types of immune regulators in the tumor microenvironment, which is one of the major mechanisms of immune tolerance against cancer. Cathelicidin-related antimicrobial peptide (CRAMP), the mouse analog of LL-37 peptide in humans, is a cationic antimicrobial peptide belonging to the cathelicidin family; however, its secretion by cancer cells and role in the tumor microenvironment (TME) remain unclear. In this study, we explored the possibility of an interaction between effector CD4+ T cells and CRAMP using in vitro-generated mouse Th17 cells. We found that CRAMP stimulates Th17 cells to express the ectonucleotidase CD73, while simultaneously inducing cell death. This finding suggested that CD73-expressing Th17 cells may function as immune suppressor cells instead of effector cells. In addition, treatment of pharmacological inhibitors of the transforming growth factor-beta (TGF-ß) signaling pathway showed that induction of CD73 expression is mediated by the p38 signaling pathway. Overall, our findings suggest that tumor-derived LL-37 likely functions as an immune suppressor that induces immune tolerance against tumors through shaping effector Th17 cells into suppressor Th17 cells, suggesting a new intervention target to improve cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Tetraspaninas/metabolismo , Células Th17/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Feminino , Humanos , Camundongos
14.
Oncoscience ; 7(1-2): 1-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32258242

RESUMO

MicroRNA-145 (miR-145) plays a suppressive role in the process of tumorigenesis and an important role in induction of autophagy. However, the exact role of miR-145 in therapeutically resistant neuroblastoma cells remain elusive. Herein, we sought to evaluate the effects of miR-145 overexpression in chemo­ and radiation-resistant neuroblastoma cells. We hypothesized that miR-145 affects the aggressiveness of resistant cells by enhancing autophagy. We established Cisplatin-resistant (CDDP-R), Vincristine-resistant (Vin-R), and radiation-resistant (Rad-R) neuroblastoma cells and found that miR-145 expression was significantly decreased in the resistant cells compared to the parental cells. Exogenously expression of miR-145 inhibited oncogenic properties such as proliferation, clonogenicity, anchorage-independent growth, cell migration, and tubule formation in the resistant cells. In addition, we also found that an autophagy protein marker, LC3, was only minimally expressed in the resistant cells. In particular, when miR-145 was overexpressed in the resistant cells, LC3 I and II were expressed and an increased punctate fluorescence of LC3 protein was found indicating the induction of autophagy. Taken together, our data suggests that miR-145 inhibits tumorigenesis and aggressiveness via modulation of autophagy in neuroblastoma.

15.
Cells ; 9(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164386

RESUMO

Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD.


Assuntos
Tecido Adiposo/metabolismo , Ceramidas/biossíntese , Dermatite Atópica/tratamento farmacológico , Epiderme/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Ceramidas/metabolismo , Dermatite Atópica/patologia , Feminino , Humanos , Camundongos
17.
J Nanosci Nanotechnol ; 20(4): 2503-2507, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492268

RESUMO

A simple and convenient method for the formation of Pt nanoparticulate films as a sensing material by controlling deposition rates is demonstrated to realize AlGaN/GaN high electron mobility transistor-based high-sensitivity hydrogen gas sensors. The Pt nanoparticulate films produced at a low deposition rate (Sample 1: 0.3 Å/s) exhibit a smooth surface and uniformly sized Pt grains, while the films produced at a high deposition rate (Sample 2: 1.5 Å/s) consist of bigger Pt grains and more coalesced grains on the surface. The deposition rate has a distinct effect on the surface morphology. The maximum current change percentage for sample 1 is 2.1×10³% at a VGS of -4.3 V while that for sample 2 is 4.4×10³% at a VGS of -4.5 V. Sample 2 has a two times larger current response to hydrogen gas than sample 1, which results from a large increase in channel conduction induced by a huge catalytic surface area of Pt nanoparticulate films. This technique offers an alternative method for the facile deposition of a sensing material and is potentially useful in various applications, such as gas, chemical, and biological sensors.

18.
Ann Hepatobiliary Pancreat Surg ; 23(4): 313-318, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31824995

RESUMO

BACKGROUNDS/AIMS: Pure laparoscopic living donor right hemihepatectomy (PLDRH) has been performed in many experienced centers. However, portal vein variations still remain challenging thus disturbing the widespread of PLDRH in many centers. PLDRH when integrated with 3-dimensional laparoscopy and indocyanine green (ICG) near-infrared fluorescence cholangiography is safe and feasible. METHODS: We reviewed 19 donors with separated right anterior and right posterior portal veins who underwent living donor right hemihepatectomy between January 2014 and December 2016. We compared the clinical outcomes of PLDRH and conventional open right hemihepatectomy (CDRH). RESULTS: 6 donors (31.6%) underwent PLDRH while 13 donors (68.4%) underwent CDRH. There was no intraoperative complications, transfusions and open conversions in the PLDRH donors. The total operative time was longer in PLDRH (356.5 vs. 244.5 minutes, p=0.003). However, the length of hospital stay (8.5 vs. 9.0 days, p=0.703), blood loss (450.0 vs. 393.6 ml, p=0.557) and complication rate (16.6% vs.27.3%; p=0.327) did not differ between the two groups. CONCLUSIONS: PLDRH is safe and feasible in donors with type II and III portal vein variations. Further prospective comparative studies are needed to prove the safety and efficacy of PLDRH.

19.
J Invest Dermatol ; 139(8): 1648-1657.e7, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30738053

RESUMO

Adipokines modulate immune responses and lipid metabolism in allergic disease; however, little is known about their role in the skin barrier and atopic dermatitis (AD). We identified ZAG, an adipokine that regulates lipid mobilization, as a biomarker for AD. ZAG levels were consistently decreased in sera, T cells, and skin in human AD patients compared with healthy controls. ZAG was primarily detected in the stratum corneum along with FLG and LOR. Knockdown of ZAG with short hairpin RNA resulted in decreased FLG and increased TSLP. Topical ZAG treatment in AD mice recovered ZAG expression in the skin and improved AD-like symptoms, transepidermal water loss, and ceramide levels. Furthermore, topical ZAG treatment induced immunoregulatory effects, including reduction of IL-4, IL-17, and IFN-γ and increased Foxp3 in the skin and lymphoid organs. Interestingly, ZAG treatment also recovered decreased levels of ADAM17, an important player in skin barrier function and immune response in AD. Thus, ZAG deficiency is closely related to skin barrier function and the immune abnormalities of AD, and we suggest that restoration of ZAG may be a promising therapeutic option for the treatment of AD.


Assuntos
Proteínas de Transporte/imunologia , Dermatite Atópica/imunologia , Glicoproteínas/imunologia , Pele/patologia , Proteína ADAM17/imunologia , Proteína ADAM17/metabolismo , Adipocinas , Administração Tópica , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Proteínas de Transporte/administração & dosagem , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Dermatite Atópica/diagnóstico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Proteínas Filagrinas , Glicoproteínas/administração & dosagem , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Injeções Intradérmicas , Queratinócitos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/imunologia , Camundongos , Permeabilidade , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Pele/imunologia , Pele/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
FEBS J ; 286(2): 413-425, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30586218

RESUMO

Endoplasmic reticulum (ER) stress is a mechanism that allows the protection of normal cellular functions in response to both internal perturbations, such as accumulation of unfolded proteins, and external perturbations, for example redox stress, UVB irradiation, and infection. A hallmark of ER stress is the accumulation of misfolded and unfolded proteins. Physiological levels of ER stress trigger the unfolded protein response (UPR) that is required to restore normal ER functions. However, the UPR can also initiate a cell death program/apoptosis pathway in response to excessive or persistent ER stress. Recently, it has become evident that chronic ER stress occurs in several diseases, including skin diseases such as Darier's disease, rosacea, vitiligo and melanoma; furthermore, it is suggested that ER stress is directly involved in the pathogenesis of these disorders. Here, we review the role of ER stress in skin function, and discuss its significance in skin diseases.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/patologia , Dermatopatias/fisiopatologia , Pele/metabolismo , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Humanos , Dobramento de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA