Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Arch Pharm Res ; 46(3): 160-176, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36905490

RESUMO

Leptin, an adipose tissue-derived hormone, exhibits potent tumor promoting effects through various mechanisms. Cathepsin B, a member of the lysosomal cysteine proteases, has been shown to modulate the growth of cancer cells. In this study, we have investigated the role of cathepsin B signaling in leptin-induced hepatic cancer growth. Leptin treatment caused significant increase in the levels of active cathepsin B through the axis of endoplasmic reticulum stress and autophagy induction without significant effects on pre- and pro-forms of cathepsin B. Interestingly, inhibition of cathepsin B signaling by gene silencing or treatment with a selective pharmacological inhibitor (CA-074) prevented leptin-enhanced viability of hepatic cancer cell and suppressed progression of cell cycle, indicating the critical role of cathepsin B in leptin-induced hepatic cancer growth. We have further observed that maturation of cathepsin B is required for NLRP3 inflammasomes activation, which is implicated in the growth of hepatic cancer cell. The crucial roles of cathepsin B maturation in leptin-induced hepatic cancer growth and NLRP3 inflammasomes activation were confirmed in an in vivo HepG2 tumor xenograft model. Taken together, these results demonstrate that cathepsin B signaling plays a pivotal role in leptin-induced hepatic cancer cell growth by activating NLRP3 inflammasomes.


Assuntos
Inflamassomos , Neoplasias Hepáticas , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Catepsina B/metabolismo , Leptina/farmacologia , Leptina/metabolismo , Neoplasias Hepáticas/tratamento farmacológico
2.
Exp Mol Med ; 55(2): 313-324, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36750692

RESUMO

Mesenchymal stem cell (MSC) therapy is an emerging treatment strategy to counteract metabolic syndromes, including obesity and its comorbid disorders. However, its effectiveness is challenged by various factors in the obese environment that negatively impact MSC survival and function. The identification of these detrimental factors will provide opportunities to optimize MSC therapy for the treatment of obesity and its comorbidities. Dysregulated production of adipokines, a group of cytokines and hormones derived from adipose tissue, has been postulated to play a pivotal role in the development of obesity-associated complications. Intriguingly, adipokines have also been implicated in the modulation of viability, self-renewal, proliferation, and other properties of MSC. However, the involvement of adipokine imbalance in impaired MSC functionality has not been completely understood. On the other hand, treatment of obese individuals with MSC can restore the serum adipokine profile, suggesting the bidirectionality of the adipokine-MSC relationship. In this review, we aim to discuss the current knowledge on the central role of adipokines in the crosstalk between obesity and MSC dysfunction. We also summarize recent advances in the use of MSC for the treatment of obesity-associated diseases to support the hypothesis that adipokines modulate the benefits of MSC therapy in obese patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome Metabólica , Humanos , Adipocinas/metabolismo , Obesidade/terapia , Obesidade/complicações , Síndrome Metabólica/metabolismo , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo
3.
Mol Ther ; 31(3): 890-908, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566348

RESUMO

Mesenchymal stem cells (MSCs) are ubiquitous multipotent cells that exhibit significant therapeutic potentials in a variety of disorders. Nevertheless, their clinical efficacy is limited owing to poor survival, low rate of engraftment, and impaired potency upon transplantation. Spheroidal three-dimensional (3D) culture of MSCs (MSC3D) has been proven to better preserve their in vivo functional properties. However, the molecular mechanisms underlying the improvement in MSC function by spheroid formation are not clearly understood. NLRP3 inflammasomes, a key component of the innate immune system, have recently been shown to play a role in cell fate decision of MSCs. The present study examined the role of NLRP3 inflammasomes in the survival and potency of MSC spheroids. We found that MSC3D led to decreased activation of NLRP3 inflammasomes through alleviation of ER stress in an autophagy-dependent manner. Importantly, downregulation of NLRP3 inflammasomes signaling critically contributes to the enhanced survival rate in MSC3D through modulation of pyroptosis and apoptosis. The critical role of NLRP3 inflammasome suppression in the enhanced therapeutic efficacy of MSC spheroids was further confirmed in an in vivo mouse model of DSS-induced colitis. These findings suggest that 3D culture confers survival and functional advantages to MSCs by suppressing NLRP3 inflammasome activation.


Assuntos
Colite , Inflamassomos , Células-Tronco Mesenquimais , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Células-Tronco Mesenquimais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais , Técnicas de Cultura de Células em Três Dimensões
4.
J Agric Food Chem ; 70(40): 13002-13014, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167496

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are indispensable analytical tools to provide chemical fingerprints in metabolomics studies. The present study evaluated radiation breeding wheat lines for chemical changes by non-targeted NMR-based metabolomics analysis of bran extracts. Multivariate analysis following spectral binning suggested pyrrole-2-carbaldehydes as chemical markers of four mutant lines with distinct NMR fingerprints in a δH range of 9.28-9.40 ppm. Further NMR and MS data analysis, along with chromatographic fractionation and synthetic preparation, aimed at structure identification of marker metabolites and identified five pyrrole-2-carbaldehydes. Quantum-mechanical driven 1H iterative full spin analysis (QM-HiFSA) on synthetic pyrrole-2-carbaldehydes provided a precise description of complex peak patterns. Biological evaluation of pyrrole-2-carbaldehydes was performed with nine synthetic products, and six compounds showed hepatoprotective effects via modulation of reactive oxygen species production. Given that three out of five identified in wheat bran of radiation were described for hepatoprotective activity, the value of radiation mutation to greatly enhance pyrrole-2-carbaldehyde production was supported.


Assuntos
Fibras na Dieta , Metabolômica , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas , Metabolômica/métodos , Pirróis , Espécies Reativas de Oxigênio
5.
Bioorg Med Chem Lett ; 73: 128921, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932905

RESUMO

This study attempted to discover tetralone-derived potent ROS inhibitors by synthesizing sixty-six hydroxylated and halogenated 2-benzylidene-3,4-dihydronaphthalen-1(2H)-ones via Claisen-Schmidt condensation reaction. The majority of the synthesized and investigated compounds significantly inhibited ROS in LPS-stimulated RAW 264.7 macrophages. When compared to malvidin (IC50 = 9.00 µM), compound 28 (IC50 = 0.18 µM) possessing 6­hydroxyl and 2­trifluoromethylphenyl moiety showed the most potent ROS inhibition. In addition, the compounds 20, 31, 39, 45, 47-48, 52, 55-56, 58-60, and 62 also displayed ten folds greater ROS inhibitory activity relative to the reference compound. Based on the structure-activity relationship study, incorporating hydroxyl groups at the 6- and 7-positions of tetralone scaffold along with different halogen functionalities in phenyl ring B is crucial for potent ROS suppression. This study contributes to a better understanding of the effect of halogen and phenolic groups in ROS suppression, and further investigations on 2-benzylidene-3,4-dihydronaphthalen-1(2H)-ones will potentially lead to the discovery of effective anti-inflammatory agents.


Assuntos
Lipopolissacarídeos , Tetralonas , Animais , Halogênios/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Óxido Nítrico/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade , Tetralonas/farmacologia
6.
Sci Adv ; 8(34): eabn8614, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001671

RESUMO

Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic-co-glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.


Assuntos
Células-Tronco Mesenquimais , Esferoides Celulares , Animais , Humanos , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transplante Heterólogo
7.
Front Nutr ; 9: 950505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811944

RESUMO

[This corrects the article DOI: 10.3389/fnut.2021.806744.].

8.
Antioxid Redox Signal ; 37(13-15): 1030-1050, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35286219

RESUMO

Aims: Raloxifene, a selective estrogen receptor (ER) modulator, has been reported to exert the tumor-suppressive effects in both ER-positive and ER-negative cancer cells; however, the mechanisms underlying its ER-independent anti-cancer effects are poorly understood. The NLRP3 inflammasome, a critical component of the innate immune system, has recently received growing attention owing to its multifaceted roles in various aspects of cancer development. The present study aimed at examining the involvement of NLRP3 inflammasomes in the anti-breast cancer effects of raloxifene and its underlying mechanisms. Results: Raloxifene significantly inhibited the activation of NLRP3 inflammasomes in various breast cancer cell lines. Importantly, forced expression of a gain-of-function variant of NLRP3 rescued breast cancer cells from growth arrest by raloxifene, suggesting that the suppression of NLRP3 inflammasomes activation mediates the raloxifene-induced inhibition of breast cancer growth. Mechanistically, raloxifene suppressed NLRP3 inflammasomes activation by lowering the cellular levels of reactive oxygen species (ROS) through the modulation of redox signaling mediated via aryl hydrocarbon receptor (AhR)-nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase-1 (HO-1) axis or the impaired generation of mitochondrial ROS in a mitophagy-dependent manner. Further, the blockage of AhR signaling or inhibition of mitophagy abolished the tumor-suppressive effect of raloxifene in a human breast tumor xenograft model. Innovation: We elucidate a novel molecular mechanism underlying the breast tumor suppressing effect of raloxifene. Conclusion: The results observed in this study suggest that the modulation of NLRP3 inflammasomes activation is a critical event in the inhibition of breast tumor growth by raloxifene. Antioxid. Redox Signal. 37, 1030-1050.


Assuntos
Neoplasias da Mama , Inflamassomos , Humanos , Feminino , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia , Receptores de Hidrocarboneto Arílico , Espécies Reativas de Oxigênio/metabolismo , Cloridrato de Raloxifeno/farmacologia , Oxirredução , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo
9.
J Exp Clin Cancer Res ; 41(1): 9, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986886

RESUMO

BACKGROUND: Adiponectin, the most abundant adipokine derived from adipose tissue, exhibits a potent suppressive effect on the growth of breast cancer cells; however, the underlying molecular mechanisms for this effect are not completely understood. Fatty acid metabolic reprogramming has recently been recognized as a crucial driver of cancer progression. Adiponectin demonstrates a wide range of metabolic activities for the modulation of lipid metabolism under physiological conditions. However, the biological actions of adiponectin in cancer-specific lipid metabolism and its role in the regulation of cancer cell growth remain elusive. METHODS: The effects of adiponectin on fatty acid metabolism were evaluated by measuring the cellular neutral lipid pool, free fatty acid level, and fatty acid oxidation (FAO). Colocalization between fluorescent-labeled lipid droplets and LC3/lysosomes was employed to detect lipophagy activation. Cell viability and apoptosis were examined by MTS assay, caspase-3/7 activity measurement, TUNEL assay, and Annexin V binding assay. Gene expression was determined by real time-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The transcriptional activity of SREBP-1 was examined by a specific dsDNA binding assay. The modulatory roles of SIRT-1 and adiponectin-activated mediators were confirmed by gene silencing and/or using their pharmacological inhibitors. Observations from in vitro assays were further validated in an MDA-MB-231 orthotopic breast tumor model. RESULTS: Globular adiponectin (gAcrp) prominently decreased the cellular lipid pool in different breast cancer cells. The cellular lipid deficiency promoted apoptosis by causing disruption of lipid rafts and blocking raft-associated signal transduction. Mechanistically, dysregulated cellular lipid homeostasis by adiponectin was induced by two concerted actions: 1) suppression of fatty acid synthesis (FAS) through downregulation of SREBP-1 and FAS-related enzymes, and 2) stimulation of lipophagy-mediated lipolysis and FAO. Notably, SIRT-1 induction critically contributed to the adiponectin-induced metabolic alterations. Finally, fatty acid metabolic remodeling by adiponectin and the key role of SIRT-1 were confirmed in nude mice bearing breast tumor xenografts. CONCLUSION: This study elucidates the multifaceted role of adiponectin in tumor fatty acid metabolic reprogramming and provides evidence for the connection between its metabolic actions and suppression of breast cancer.


Assuntos
Adiponectina/metabolismo , Neoplasias da Mama/genética , Morte Celular/fisiologia , Ácidos Graxos/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Transfecção
10.
Neurochem Int ; 148: 105120, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197898

RESUMO

Oxidative stress and mitochondrial dysfunction are now widely accepted as the major factors involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a commonly used environmental toxin also reproduces these principle pathological features of PD. Hence, it is used frequently to induce experimental PD in cells and animals. In this study, we evaluated the neuroprotective effects of metformin against rotenone-induced toxicity in SH-SY5Y cells. Metformin treatment clearly rescued these cells from rotenone-mediated cell death via the reduction of the cytosolic and mitochondrial levels of reactive oxygen species and restoration of mitochondrial function. Furthermore, metformin upregulated PGC-1α, the master regulator of mitochondrial biogenesis and key antioxidant molecules, including glutathione and superoxide dismutase. We demonstrated that the drug exerted its cytoprotective effects by activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase (HO)-1 pathway, which in turn, is dependent on AKT activation by metformin. Thus, our results implicate that metformin provides neuroprotection against rotenone by inhibiting oxidative stress in the cells by inducing antioxidant system via upregulation of transcription mediated by Nrf2, thereby restoring the rotenone-induced mitochondrial dysfunction and energy deficit in the cells.


Assuntos
Hipoglicemiantes/farmacologia , Metformina/farmacologia , Doenças Mitocondriais/prevenção & controle , Fator 2 Relacionado a NF-E2/genética , Proteína Oncogênica v-akt/genética , Estresse Oxidativo/efeitos dos fármacos , Rotenona/antagonistas & inibidores , Rotenona/toxicidade , Transdução de Sinais/efeitos dos fármacos , Desacopladores/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535537

RESUMO

Adiposity is associated with an increased risk of various types of carcinoma. One of the plausible mechanisms underlying the tumor-promoting role of obesity is an aberrant secretion of adipokines, a group of hormones secreted from adipose tissue, which have exhibited both oncogenic and tumor-suppressing properties in an adipokine type- and context-dependent manner. Increasing evidence has indicated that these adipose tissue-derived hormones differentially modulate cancer cell-specific metabolism. Some adipokines, such as leptin, resistin, and visfatin, which are overproduced in obesity and widely implicated in different stages of cancer, promote cellular glucose and lipid metabolism. Conversely, adiponectin, an adipokine possessing potent anti-tumor activities, is linked to a more favorable metabolic phenotype. Adipokines may also play a pivotal role under the reciprocal regulation of metabolic rewiring of cancer cells in tumor microenvironment. Given the fact that metabolic reprogramming is one of the major hallmarks of cancer, understanding the modulatory effects of adipokines on alterations in cancer cell metabolism would provide insight into the crosstalk between obesity, adipokines, and tumorigenesis. In this review, we summarize recent insights into putative roles of adipokines as mediators of cellular metabolic rewiring in obesity-associated tumors, which plays a crucial role in determining the fate of tumor cells.


Assuntos
Adipocinas/metabolismo , Progressão da Doença , Neoplasias/complicações , Neoplasias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adiposidade , Animais , Glucose/metabolismo , Glicólise , Humanos , Inflamação/patologia , Leptina/metabolismo , Metabolismo dos Lipídeos , Camundongos , Mitocôndrias/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Oxirredução , Fenótipo , Espécies Reativas de Oxigênio , Resistina/metabolismo , Microambiente Tumoral
12.
Front Nutr ; 8: 806744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059428

RESUMO

Recently, wheat has attracted attention as a functional food, rather than a simple dietary energy source. Accordingly, whole-grain intake increases with an understanding of bioactive phytochemicals in bran. The development of colored wheat has drawn more attention to the value of bran owing to its nutritional quality, as well as the antioxidant properties of the colorant. The present 1H NMR-based chemometric study evaluated the compositional improvement of radiation-induced mutants in purple wheat by focusing on the predominant metabolites with high polarity. A total of 33 metabolites, including three choline derivatives, three sugar alcohols, four sugars, 13 amino acids, eight organic acids, and two nucleosides, were identified throughout the 1H NMR spectra, and quantification data were obtained for the identified metabolites via peak shape-based quantification. Principal component and hierarchical cluster analyses were conducted for performing multivariate analyses. The colored original wheat was found to exhibit improvements compared to yellow wheat in terms of the contents of primary metabolites, thus highlighting the importance of conducting investigations of polar metabolites. The chemometrics studies further revealed mutant lines with a compositional enhancement for metabolites, including lysine, proline, acetate, and glycerol.

13.
Mol Oncol ; 15(2): 657-678, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33226729

RESUMO

Leptin, a hormone predominantly derived from adipose tissue, is well known to induce growth of breast cancer cells. However, its underlying mechanisms remain unclear. In this study, we examined the role of reprogramming of lipid metabolism and autophagy in leptin-induced growth of breast cancer cells. Herein, leptin induced significant increase in fatty acid oxidation-dependent ATP production in estrogen receptor-positive breast cancer cells. Furthermore, leptin induced both free fatty acid release and intracellular lipid accumulation, indicating a multifaceted effect of leptin in fatty acid metabolism. These findings were further validated in an MCF-7 tumor xenograft mouse model. Importantly, all the aforementioned metabolic effects of leptin were mediated via autophagy activation. In addition, SREBP-1 induction driven by autophagy and fatty acid synthase induction, which is mediated by SREBP-1, plays crucial roles in leptin-stimulated metabolic reprogramming and are required for growth of breast cancer cell, suggesting a pivotal contribution of fatty acid metabolic reprogramming to tumor growth by leptin. Taken together, these results highlighted a crucial role of autophagy in leptin-induced cancer cell-specific metabolism, which is mediated, at least in part, via SREBP-1 induction.


Assuntos
Autofagia , Neoplasias da Mama/metabolismo , Reprogramação Celular , Ácidos Graxos/metabolismo , Leptina/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Neoplasias da Mama/genética , Ácidos Graxos/genética , Feminino , Humanos , Leptina/genética , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
14.
Autophagy ; 17(10): 2991-3010, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33206581

RESUMO

Mesenchymal stromal cells (MSCs) have received attention as promising therapeutic agents for the treatment of various diseases. However, poor post-transplantation viability is a major hurdle in MSC-based therapy, despite encouraging results in many inflammatory disorders. Recently, three dimensional (3D)-cultured MSCs (MSC3D) were shown to have higher cell survival and enhanced anti-inflammatory effects, although the underlying mechanisms have not yet been elucidated. In this study, we investigated the molecular mechanisms by which MSC3D gain the potential for enhanced cell viability. Herein, we found that macroautophagy/autophagy was highly induced and ROS production was suppressed in MSC3D as compared to 2D-cultured MSCs (MSC2D). Interestingly, inhibition of autophagy induction caused decreased cell viability and increased apoptotic activity in MSC3D. Furthermore, modulation of ROS production was closely related to the survival and apoptosis of MSC3D. We also observed that HMOX1 (heme oxygenase 1) was significantly up-regulated in MSC3D. In addition, gene silencing of HMOX1 caused upregulation of ROS production and suppression of the genes related to autophagy. Moreover, inhibition of HIF1A (hypoxia inducible factor 1 subunit alpha) caused suppression of HMOX1 expression in MSC3D, indicating that the HIF1A-HMOX1 axis plays a crucial role in the modulation of ROS production and autophagy induction in MSC3D. Finally, the critical role of autophagy induction on improved therapeutic effects of MSC3D was further verified in dextran sulfate sodium (DSS)-induced murine colitis. Taken together, these results indicated that autophagy activation and modulation of ROS production mediated via the HIF1A-HMOX1 axis play pivotal roles in enhancing the viability of MSC3D.Abbreviations: 3D: three dimensional; 3MA: 3 methlyadenine; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CFSE: carboxyfluorescein succinimidyl ester; CoCl2: cobalt chloride; CoPP: cobalt protoporphyrin; DSS: dextran sulfate sodium; ECM: extracellular matrix; FOXO3/FOXO3A: forkhead box O3; HIF1A: hypoxia inducible factor 1 subunit alpha; HMOX1/HO-1: heme oxygenase 1; HSCs: hematopoietic stem cells; IL1A/IL-1α: interleukin 1 alpha; IL1B/IL-1ß: interleukin 1 beta; IL8: interleukin 8; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MSC2D: 2D-cultured MSCs; MSC3D: 3D-cultured MSCs; MSCs: mesenchymal stromal cells; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; PGE2: prostaglandin E2; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; ROS: reactive oxygen species; siRNA: small interfering RNA; SIRT1: sirtuin 1; SOD2: superoxide dismutase 2; SQSTM1/p62: sequestosome 1; TGFB/TGF-ß: transforming growth factor beta.


Assuntos
Autofagia , Células-Tronco Mesenquimais , Animais , Heme Oxigenase-1 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas de Membrana , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo
15.
Arch Pharm Res ; 43(10): 997-1016, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33078304

RESUMO

Aberrant production of adipokines, a group of adipocytes-derived hormones, is considered one of the most important pathological characteristics of obesity. In individuals with obesity, beneficial adipokines, such as adiponectin are downregulated, whereas leptin and other pro-inflammatory adipokines are highly upregulated. Hence, the imbalance in levels of these adipokines is thought to promote the development of obesity-linked complications. However, the mechanisms by which adipokines contribute to the pathogenesis of various diseases have not been clearly understood. Inflammasomes represent key signaling platform that triggers the inflammatory and immune responses through the processing of the interleukin family of pro-inflammatory cytokines in a caspase-1-dependent manner. Beyond their traditional function as a component of the innate immune system, inflammasomes have been recently integrated into the pathological process of multiple metabolism- and obesity-related disorders such as cardiovascular diseases, diabetes, fatty liver disease, and cancer. Interestingly, emerging evidence also highlights the role of adipokines in the modulation of inflammasomes activation, making it a promising mechanism underlying distinct biological actions of adipokines in diseases driven by inflammation and metabolic disorders. In this review, we summarize the effects of adipokines, in particular adiponectin, leptin, visfatin and apelin, on inflammasomes activation and their implications in the pathophysiology of obesity-linked complications.


Assuntos
Adipocinas/metabolismo , Inflamassomos/imunologia , Doenças Metabólicas/complicações , Obesidade/complicações , Adipócitos/citologia , Adipócitos/imunologia , Adipócitos/metabolismo , Animais , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Humanos , Inflamassomos/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Regulação para Cima/imunologia
16.
Biochem Pharmacol ; 180: 114193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32800853

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to a decrease in striatal dopamine. There is no antiparkinsonian therapy that offers a true disease-modifying treatment till date and there is an urgent need for a safe and effective neuroprotective or neurorestorative therapy. Our previous study demonstrated that metformin upregulated dopamine in the mouse brain and provided significant neuroprotection in animal model of PD. Therefore, we designed this study to investigate the molecular mechanism underlying such pharmacological effect of metformin. Herein, we found that metformin enhanced the phosphorylation of tyrosine hydroxylase (TH) which was accompanied by increase in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and activation of their downstream signaling pathways in the mouse brain and SH-SY5Y cells. We further investigated the role of the neurotrophic factors in the activation of TH and observed that both BDNF and GDNF-induction were essential for metformin-induced TH activation. We found that the AMPK/aPKCζ/CREB pathway was essential for metformin-induced GDNF upregulation and TH activation. Thus, this study reveals the TH-activating property of metformin in the brain via induction of neurotrophic factors along with the signaling mechanism. These results potentiate the candidacy of metformin not only as a neuroprotective agent, but also as restorative therapy for the treatment of PD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dopamina/biossíntese , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Metformina/farmacologia , Proteína Quinase C/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
18.
Biochem Pharmacol ; 180: 114186, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745467

RESUMO

Accumulating evidence suggests that adipokines, a group of hormones secreted from adipose tissue, modulate tumor growth in a complicated manner. Among diverse adipokines, adiponectin exerts potent anti-tumor activities, whereas leptin exhibits pro-tumorigenic properties. Herein, we have examined the opposing effect of adiponectin on leptin-induced growth of cancer cells and investigated the underlying mechanisms, particularly in the context of inflammasomes activation, which plays a role in the growth of cancer cells. Globular adiponectin (gAcrp) significantly suppressed leptin-induced growth of human breast (MCF-7) and hepatic (HepG2) cancer cells by modulating both cell cycle and apoptosis. To elucidate the underlying mechanisms, we examined the modulatory effects of gAcrp and leptin on inflammasomes. Herein, we showed that gAcrp substantially abolished leptin-induced inflammasomes activation, as evidenced by suppression of IL-1ß maturation, caspase-1 activation, and downregulation of inflammasomes components, including NLRP3 and ASC, in both MCF-7 and HepG2 cancer cells. Interestingly, suppression of inflammasomes activation by gAcrp was almost completely restored by blockade of heme oxygenase-1 (HO-1) signaling. In addition, suppressive effects of gAcrp on ROS production and NADPH oxidase activation, both of which critically contribute to leptin-induced inflammasomes activation, disappeared by inhibition of HO-1 signaling. Moreover, gAcrp downregulated estrogen receptor-α (ER-α) expression and blocked leptin-induced ER-α activation, which also plays an important role in inflammasomes activation. Finally, the opposing effects of gAcrp on leptin-induced inflammasomes activation and tumor growth were further confirmed in MCF-7 tumor xenografts. In summary, treatment with gAcrp prevents leptin-induced cancer cell growth by modulating inflammasome activation, which is mediated, at least in part, via HO-1 induction and modulation of ER-α signaling.


Assuntos
Adiponectina/farmacologia , Inibidores do Crescimento/farmacologia , Heme Oxigenase-1/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Leptina/antagonistas & inibidores , Adiponectina/química , Animais , Inibidores do Crescimento/química , Células Hep G2 , Humanos , Leptina/toxicidade , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
Arch Pharm Res ; 43(8): 875, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32737847

RESUMO

The authors regret to inform that authors Pramod Aryal and Shuang Wu were inadvertently omitted from authorship of the manuscript above at the time of original submission. Pramod Aryal and Shuang Wu were contributors to conducting experiments, acquiring and initial plotting/analyzing data. The authors would like to state that Sun You and Pramod Aryal contributed equally to this work as co-first authors. The authors would like to re-designate the authorship of this manuscript, and add the current addresses of these two new authors, Pramod Aryal and Shuang Wu as shown in this Correction.

20.
Stem Cell Res Ther ; 11(1): 63, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32127052

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder of unknown etiology, but is closely associated with damage to dopaminergic neurons. MSA progression is rapid. Hence, long-term drug treatments do not have any therapeutic benefits. We assessed the inhibitory effect of mesenchymal stem cells (MSCs) on double-toxin-induced dopaminergic neurodegenerative MSA. RESULTS: Behavioral disorder was significantly improved and neurodegeneration was prevented following MSC transplantation. Proteomics revealed lower expression of polyamine modulating factor-binding protein 1 (PMFBP1) and higher expression of 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), but these changes were reversed after MSC transplantation. In the in vitro study, the 6-OHDA-induced effects were reversed following co-culture with MSC. However, PMFBP1 knockdown inhibited the recovery effect due to the MSCs. Furthermore, HMGCL expression was decreased following co-culture with MSCs, but treatment with recombinant HMGCL protein inhibited the recovery effects due to MSCs. CONCLUSIONS: These data indicate that MSCs protected against neuronal loss in MSA by reducing polyamine- and cholesterol-induced neural damage.


Assuntos
Células da Medula Óssea/metabolismo , Colesterol/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Atrofia de Múltiplos Sistemas/prevenção & controle , Atrofia de Múltiplos Sistemas/terapia , Poliaminas/efeitos adversos , Animais , Humanos , Masculino , Atrofia de Múltiplos Sistemas/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA