RESUMO
This study aimed to evaluate and compare the effects of oil- and air-heat treatments on the durability of Paulownia tomentosa and Pinus koraiensis woods against Fomitopsis palustris and Trametes versicolor. The wood samples were treated in palm oil and air at 180, 200, and 220 °C for 2 h. The weight loss, morphology, crystalline properties, and chemical compounds of untreated and heat-treated wood after fungal attack were investigated. The significant difference in weight loss between oil- and air-heat-treated samples was shown at 220 °C. Heat-treated wood exposed to white-rot fungus showed a lower weight loss than that exposed to brown-rot fungus. The cell components in the untreated- and heat-treated Paulownia tomentosa and Pinus koraiensis at 180 °C were severely damaged due to fungal exposure compared to those at 220 °C. A fungal effect on the relative crystallinity was observed in heat-treated wood at 180 °C, whereas the effect was not observed at 220 °C. Following brown-rot fungus exposure, untreated- and heat-treated wood at 180 °C showed a notable change in the Fourier transform infrared (FTIR) peaks of polysaccharides, whereas no noticeable change in lignin peaks was observed. Heat-treated wood at 220 °C showed no noticeable change in the FTIR spectra owing to brown-rot fungus exposure. Exposure to white-rot fungus did not noticeably change the FTIR spectra of untreated and heat-treated wood.
Assuntos
Temperatura Alta , Magnoliopsida , Pinus , Doenças das Plantas , Madeira , Fungos , Lignina/análise , Óleo de Palmeira , Pinus/microbiologia , Trametes , Redução de Peso , Madeira/química , Madeira/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Magnoliopsida/microbiologia , ArRESUMO
Background: Sarcopenia and muscular dystrophy are two muscle diseases. In cancer patients, cancer cachexia induces continuous weight loss and muscle loss due to the disease itself or the use of anticancer drugs. Cachexia occurs in up to 80% of cancer patients. It is recognized as a direct cause of reduced quality of life, contributing to at least 20% of cancer-associated deaths and limiting therapeutic options for cancer patients. Cancer cachexia is associated with multiple chronic or end-stage conditions and develops similarly. There are various options for the treatment of cancer cachexia, but there are still many issues to be solved. Hence, to determine its potential to overcome the muscle wasting during cancer cachexia, we studied the effect of BST204, a refined dry ginseng extract, on muscle fiber regeneration. Experimental procedure: We checked the muscle regeneration efficacy of BST204. First, BaCl2 and freeze injury models were selected to investigate muscle regeneration after BST204 administration. In addition, after inducing muscle differentiation of C2C12 cells, the efficacy of BST204 was analyzed. In this model, we analyzed the expression of the signal pathway (PI3K-AKT signal) by Western blot and imaging methods. Results and conclusion: These results showed that BST204 induced muscle fiber regeneration in BaCl2 and freeze injury models. Also, we confirmed that BST204 could regulate the PI3K/AKT signaling pathway and regulate the differentiation of C2C12 cells. These results indicate that BST204 has the potential to facilitate the skeletal muscle regeneration during muscle wasting induced by various factors including cancer cachexia.
RESUMO
Oil palm (Elaeis guineensis Jacq.) plantations in Indonesia are increasing over the past few years. After economic productivity, however, the unproductive oil palm trunks are felled and mostly go to waste, especially the inner part of the oil palm trunk (IOPT). There are several modification methods to utilize IOPT, such as impregnation and densification. Methylene diphenyl diisocyanate (MDI) is a common resin used for impregnation in composite industries because it is non-toxic and has excellent physical and mechanical properties but it has never been applied for the impregnation of IOPT. This study aimed to analyze the effect of densification on the physical and mechanical properties of the inner part of oil palm trunk (IOPT) impregnated using methylene diphenyl diisocyanate (MDI) resin to obtain valuable information regarding the efficient utilization of unproductive oil palm trunks. IOPT was densified and compregnated with compression ratios (CRs) of 20% and 30%. The physical properties (density, moisture content (MC), and water absorption (WA)) and mechanical properties (modulus of elasticity (MOE), modulus of rupture (MOR), and hardness) of the compregnated samples were better than those of the densified samples. The density and mechanical properties at CR 30% were higher than those at CR 20%. The improvements in density, MC, and WA of the compregnated IOPT with CR 30% were 127%, 54%, and 70%, respectively, compared to that in untreated IOPT. Furthermore, improvements in the MOE, MOR, and hardness of the compregnated IOPT with CR 30% were 489%, 379%, and 393%, respectively. The mechanical properties of the compregnated IOPT at CR 20% and 30% increased two- to three-fold from strength class V in control IOPT to strength class III in compregnated IOPT with CR 20% and to strength class II in compregnated IOPT with CR 30%, respectively.
Assuntos
Arecaceae , Alimentos , Isocianatos , ÁguaRESUMO
Finger millet (Eleusine coracana) contains high levels of calcium and polyphenols, which have a variety of beneficial functions. We tested the hypothesis that finger millet ethanol extracts (FEs) have an antihypertensive effect in spontaneously hypertensive rats (SHRs). The study groups were assigned as follows: (1) Wistar Kyoto rats (normal); (2) SHRs treated with saline (negative control); (3) SHRs treated with captopril 50 mg/kg bw (positive control); (4) SHRs treated with FE 250 mg/kg bw (FE250); and (5) SHRs treated with FE 500 mg/kg bw (FE500). FE supplementation improved the lipid profiles, including the triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels, without deterioration in liver function. The thiobarbituric acid reactive substance concentration and superoxide dismutase activity significantly improved after the application of FE250 and FE500. Interestingly, FE250 and FE500 application dramatically reduced the systolic blood pressure. FE supplementation exhibited powerful control over the renin-angiotensin system by reducing the angiotensin-converting enzyme levels and renin mRNA expression in the kidney. Additionally, FE500 application ameliorated vascular remodeling, reversed the thickening media, and decreased the media thickness/lumen diameter ratio of the aorta. These results imply that FEs are a potent antihypertensive nutraceutical for regulating the renin-angiotensin system and simultaneously inhibiting oxidative stress.
RESUMO
In this study, the monoterpenes, α-pinene and geraniol, were biotransformed to synthesize monoterpene alcohol compounds. Polyporus brumalis which is classified as a white rot fungus was used as a biocatalyst. Consequently α-terpineol was synthesized from α-pinene by P. brumalis mycelium, after three days. Moreover, another substrate, the acyclic monoterpenoids geraniol was transformed into the cyclic compound, p-menthane-3, 8-diol (PMD). The main metabolites, i.e., α-terpineol and PMD, are known to be bioactive monoterpene alcohol compounds. This study highlights the potential of fungal biocatalysts for monoterpene transformation.