Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 231: 123577, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758763

RESUMO

Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Animais , Camundongos , Peróxido de Hidrogênio/metabolismo , Ligantes , Necrose , Ácido Láctico , Microambiente Tumoral
2.
J Nanobiotechnology ; 21(1): 5, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597089

RESUMO

The aggressive proliferation of tumor cells often requires increased glucose uptake and excessive anaerobic glycolysis, leading to the massive production and secretion of lactate to form a unique tumor microenvironment (TME). Therefore, regulating appropriate lactate levels in the TME would be a promising approach to control tumor cell proliferation and immune suppression. To effectively consume lactate in the TME, lactate oxidase (LOX) and catalase (CAT) were displayed onto Aquifex aeolicus lumazine synthase protein nanoparticles (AaLS) to form either AaLS/LOX or AaLS/LOX/CAT. These complexes successfully consumed lactate produced by CT26 murine colon carcinoma cells under both normoxic and hypoxic conditions. Specifically, AaLS/LOX generated a large amount of H2O2 with complete lactate consumption to induce drastic necrotic cell death regardless of culture condition. However, AaLS/LOX/CAT generated residual H2O2, leading to necrotic cell death only under hypoxic condition similar to the TME. While the local administration of AaLS/LOX to the tumor site resulted in mice death, that of AaLS/LOX/CAT significantly suppressed tumor growth without any severe side effects. AaLS/LOX/CAT effectively consumed lactate to produce adequate amounts of H2O2 which sufficiently suppress tumor growth and adequately modulate the TME, transforming environments that are favorable to tumor suppressive neutrophils but adverse to tumor-supportive tumor-associated macrophages. Collectively, these findings showed that the modular functionalization of protein nanoparticles with multiple metabolic enzymes may offer the opportunity to develop new enzyme complex-based therapeutic tools that can modulate the TME by controlling cancer metabolism.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Ácido Láctico , Catalase , Microambiente Tumoral , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
3.
J Nanobiotechnology ; 20(1): 387, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999603

RESUMO

The plant toxin ricin, especially its cytotoxic A chain (RTA), can be genetically engineered with targeting ligands to develop specific anti-cancer recombinant immunotoxins (RITs). Here, we used affibody molecules targeting two cancer biomarkers, the receptors HER2 and EGFR, along with the KDEL signal peptide to construct two cancer-specific ricin-based RITs, HER2Afb-RTA-KDEL and EGFRAfb-RTA-KDEL. The affibodies successfully provided target-specificity and subsequent receptor-mediated endocytosis and the KDEL signal peptide routed the RITs through the retrograde transport pathway, effectively delivering RTA to the cytosol as well as avoiding the alternate recycling pathway that typical cancer cells frequently have. The in vivo efficacy of RITs was enhanced by introducing the albumin binding domain (AlBD) to construct AlBD/HER2Afb/RTA-KDEL. Systemic administration of AlBD-containing RITs to tumor-bearing mice significantly suppressed tumor growth without any noticeable side-effects. Collectively, combining target-selective affibody molecules, a cytotoxic RTA, and an intracellularly designating peptide, we successfully developed cancer-specific and efficacious ricin-based RITs. This approach can be applied to develop novel protein-based "magic bullets" to effectively suppress tumors that are resistant to conventional anti-cancer drugs.


Assuntos
Imunotoxinas , Neoplasias , Ricina , Animais , Apoptose , Endocitose , Imunotoxinas/metabolismo , Imunotoxinas/farmacologia , Camundongos , Neoplasias/tratamento farmacológico , Sinais Direcionadores de Proteínas , Ricina/farmacologia , Ricina/toxicidade
4.
J Control Release ; 349: 367-378, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809662

RESUMO

The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer drug candidate because it selectively binds to the proapoptotic death receptors, which are frequently overexpressed in a wide range of cancer cells, subsequently inducing strong apoptosis in these cells. However, the therapeutic benefit of TRAIL has not been clearly proven, mainly because of its poor pharmacokinetic characteristics and frequent resistance to its application caused by the activation of a survival signal via the EGF/epidermal growth factor receptor (EGFR) signaling pathway. Here, a lumazine synthase protein cage nanoparticle isolated from Aquifex aeolicus (AaLS) was used as a multiple ligand-displaying nanoplatform to display polyvalently both TRAIL and EGFR binding affibody molecules (EGFRAfb) via a SpyTag/SpyCatcher protein-ligation system, to form AaLS/TRAIL/EGFRAfb. The dual-ligand-displaying AaLS/TRAIL/EGFRAfb exhibited a dramatically enhanced cytotoxicity on TRAIL-resistant and EGFR-overexpressing A431 cancer cells in vitro, effectively disrupting the EGF-mediated EGFR survival signaling pathway by blocking EGF/EGFR binding as well as strongly activating both the extrinsic and intrinsic apoptotic pathways synergistically. The AaLS/TRAIL/EGFRAfb selectively targeted A431 cancer cells in vitro and actively reached the tumor sites in vivo. The A431 tumor-bearing mice treated with AaLS/TRAIL/EGFRAfb exhibited a significant suppression of the tumor growth without any significant side effects. Collectively, these findings showed that the AaLS/TRAIL/EGFRAfb could be used as an effective protein-based therapeutic for treating EGFR-positive cancers, which are difficult to manage using mono-therapeutic approaches.


Assuntos
Antineoplásicos , Nanopartículas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico , Receptores ErbB/metabolismo , Ligantes , Camundongos , Receptores de Morte Celular , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
5.
J Control Release ; 335: 269-280, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34044091

RESUMO

Magnetic resonance imaging (MRI) is a non-invasive in vivo imaging tool, providing high enough spatial resolution to obtain both the anatomical and the physiological information of patients. However, MRI generally suffers from relatively low sensitivity often requiring the aid of contrast agents (CA) to enhance the contrast of vessels and/or the tissues of interest from the background. The targeted delivery of diagnostic probes to the specific lesion is a powerful approach for early diagnosis and signal enhancement leading to the effective treatment of various diseases. Here, we established targeting ligand switchable nanoplatforms using lumazine synthase protein cage nanoparticles derived from Aquifex aeolicus (AaLS) by genetically introducing the SpyTag peptide (ST) to the C-terminus of the AaLS subunits to form an ST-displaying AaLS (AaLS-ST). Conversely, multiple targeting ligands were constructed by genetically fusing SpyCatcher protein (SC) to either HER2 or EGFR targeting affibody molecules (SC-HER2Afb or SC-EGFRAfb). Gd(III)-DOTA complexes were chemically attached to the AaLS-ST and the external surface of the Gd(III)-DOTA conjugated AaLS-ST (Gd(III)-DOTA-AaLS-ST) were successfully decorated with either the HER2Afb or the EGFRAfb. The resulting Gd(III)-DOTA-AaLS/HER2Afb and Gd(III)-DOTA-AaLS/EGFR2Afb exhibited high r1 relaxivity values of 57 and 25 mM-1 s-1 at 1.4 and 7 T, respectively, which were 10-fold or higher than those of the clinically used Dotarem. Their target-selective contrast enhancements were confirmed with in vitro cell-based MRI scans and the in vivo MR imaging of tumor-bearing mouse models at 7 T. A target-switchable AaLS-based nanoplatform that was developed in this study might serve as a promising T1 CA developing platform at a high magnetic field to detect various tumor sites in a target-specific manner in future clinical applications.


Assuntos
Nanopartículas , Neoplasias , Animais , Meios de Contraste , Humanos , Ligantes , Imageamento por Ressonância Magnética , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
6.
Biomacromolecules ; 19(7): 2896-2904, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29847113

RESUMO

The selective detection of specific cells of interest and their effective visualization is important but challenging, and fluorescent cell imaging with target-specific probes is commonly used to visualize cell morphology and components and to track cellular processes. Multiple displays of two or more targeting ligands on a polyvalent single template would make it possible to construct versatile multiplex fluorescent cell imaging probes that can visualize two or more target cells individually without the need for a set of individual probes. To achieve this goal, we used encapsulin, a new class of protein cage nanoparticles, as a template and implanted dual targeting capability by presenting two different affibody molecules on a single encapsulin protein cage nanoparticle post-translationally. Encapsulin was self-assembled from 60 identical subunits to form a hollow and symmetric spherical structure with a uniform size. We genetically inserted SpyTag peptides onto the encapsulin surface and prepared various SpyCatcher-fused proteins, such as fluorescent proteins and targeting affibody molecules. We successfully displayed fluorescent proteins and affibody molecules together on a single encapsulin in a mix-and-match manner post-translationally using bacterial superglue, the SpyTag/SpyCatcher ligation system, and demonstrated that these dual functional encapsulins can be used as target-specific fluorescent cell imaging probes. Dual targeting protein cage nanoparticles were further constructed by ligating two different affibody molecules onto the encapsulin surface with fluorescent dyes, and they effectively recognized and bound to two individual targeting cells independently, which could be visualized by selective colors on demand.


Assuntos
Proteínas de Bactérias/química , Nanopartículas/química , Proteínas de Bactérias/genética , Linhagem Celular , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Células MCF-7 , Microscopia de Fluorescência/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Thermotoga maritima/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA