Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 34: 401-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282966

RESUMO

In vitro vascularized cancer models utilizing microfluidics have emerged as a promising tool for mechanism study and drug screening. However, the lack of consideration and preparation methods for cancer cellular sources that are capable of adequately replicating the metastatic features of circulating tumor cells contributed to low relevancy with in vivo experimental results. Here, we show that the properties of cancer cellular sources have a considerable impact on the validity of the in vitro metastasis model. Notably, with a hydrophobic surface, we can create highly metastatic spheroids equipped with aggressive invasion, endothelium adhesion capabilities, and activated metabolic features. Combining these metastatic spheroids with the well-constructed microfluidic-based extravasation model, we validate that these metastatic spheroids exhibited a distinct extravasation response to epidermal growth factor (EGF) and normal human lung fibroblasts compared to the 2D cultured cancer cells, which is consistent with the previously reported results of in vivo experiments. Furthermore, the applicability of the developed model as a therapeutic screening platform for cancer extravasation is validated through profiling and inhibition of cytokines. We believe this model incorporating hydrophobic surface-cultured 3D cancer cells provides reliable experimental data in a clear and concise manner, bridging the gap between the conventional in vitro models and in vivo experiments.

2.
Small ; 18(17): e2106648, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35297560

RESUMO

Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8+ T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.


Assuntos
Células Dendríticas , Polímeros , Apresentação de Antígeno , Técnicas de Cultura de Células/métodos , Células Dendríticas/metabolismo , Ativação Linfocitária , Polímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA