Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 201(2): 700-713, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884704

RESUMO

In the immune system, degranulation/exocytosis from lymphocytes is crucial for life through facilitating eradication of infected and malignant cells. Dysfunction of the NK cell exocytosis process has been implicated with devastating immune diseases, such as familial hemophagocytic lymphohistiocytosis, yet the underlying molecular mechanisms of such processes have remained elusive. In particular, although the lytic granule exocytosis from NK cells is strictly Ca2+-dependent, the molecular identity of the Ca2+ sensor has yet to be identified. In this article, we show multiple lines of evidence in which point mutations in aspartic acid residues in both C2 domains of human Munc13-4, whose mutation underlies familial hemophagocytic lymphohistiocytosis type 3, diminished exocytosis with dramatically altered Ca2+ sensitivity in both mouse primary NK cells as well as rat mast cell lines. Furthermore, these mutations within the C2 domains severely impaired NK cell cytotoxicity against malignant cells. Total internal reflection fluorescence microscopy analysis revealed that the mutations strikingly altered Ca2+ dependence of fusion pore opening of each single granule and frequency of fusion events. Our results demonstrate that both C2 domains of Munc13-4 play critical roles in Ca2+-dependent exocytosis and cytotoxicity by regulating single-granule membrane fusion dynamics in immune cells.


Assuntos
Células Matadoras Naturais/imunologia , Linfo-Histiocitose Hemofagocítica/imunologia , Mastócitos/imunologia , Proteínas de Membrana/metabolismo , Vesículas Secretórias/metabolismo , Animais , Ácido Aspártico/genética , Sinalização do Cálcio , Degranulação Celular , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/genética , Domínios Proteicos/genética , Ratos
2.
Curr Biol ; 27(3): 408-414, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28089515

RESUMO

Eukaryotic plasma membrane organization theory has long been controversial, in part due to a dearth of suitably high-resolution techniques to probe molecular architecture in situ and integrate information from diverse data streams [1]. Notably, clustered patterning of membrane proteins is a commonly conserved feature across diverse protein families (reviewed in [2]), including the SNAREs [3], SM proteins [4, 5], ion channels [6, 7], and receptors (e.g., [8]). Much effort has gone into analyzing the behavior of secretory organelles [9-13], and understanding the relationship between the membrane and proximal organelles [4, 5, 12, 14] is an essential goal for cell biology as broad concepts or rules may be established. Here we explore the generally accepted model that vesicles at the plasmalemma are guided by cytoskeletal tracks to specific sites on the membrane that have clustered molecular machinery for secretion [15], organized in part by the local lipid composition [16]. To increase our understanding of these fundamental processes, we integrated nanoscopy and spectroscopy of the secretory machinery with organelle tracking data in a mathematical model, iterating with knockdown cell models. We find that repeated routes followed by successive vesicles, the re-use of similar fusion sites, and the apparently distinct vesicle "pools" are all fashioned by the Brownian behavior of organelles overlaid on navigation between non-reactive secretory protein molecular depots patterned at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Organelas/metabolismo , Vesículas Secretórias/metabolismo , Animais , Transporte Biológico , Células PC12 , Ratos , Proteínas SNARE/metabolismo
3.
Mol Biol Cell ; 27(4): 669-85, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26700321

RESUMO

Syntaxin-1 is the central SNARE protein for neuronal exocytosis. It interacts with Munc18-1 through its cytoplasmic domains, including the N-terminal peptide (N-peptide). Here we examine the role of the N-peptide binding in two conformational states ("closed" vs. "open") of syntaxin-1 using PC12 cells and Caenorhabditis elegans. We show that expression of "closed" syntaxin-1A carrying N-terminal single point mutations (D3R, L8A) that perturb interaction with the hydrophobic pocket of Munc18-1 rescues impaired secretion in syntaxin-1-depleted PC12 cells and the lethality and lethargy of unc-64 (C. elegans orthologue of syntaxin-1)-null mutants. Conversely, expression of the "open" syntaxin-1A harboring the same mutations fails to rescue the impairments. Biochemically, the L8A mutation alone slightly weakens the binding between "closed" syntaxin-1A and Munc18-1, whereas the same mutation in the "open" syntaxin-1A disrupts it. Our results reveal a striking interplay between the syntaxin-1 N-peptide and the conformational state of the protein. We propose that the N-peptide plays a critical role in intracellular trafficking of syntaxin-1, which is dependent on the conformational state of this protein. Surprisingly, however, the N-peptide binding mode seems dispensable for SNARE-mediated exocytosis per se, as long as the protein is trafficked to the plasma membrane.


Assuntos
Proteínas de Caenorhabditis elegans/química , Exocitose , Proteínas Munc18/metabolismo , Neurônios/fisiologia , Sintaxina 1/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Neurônios/metabolismo , Células PC12 , Peptídeos/química , Peptídeos/metabolismo , Mutação Puntual , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Sintaxina 1/genética , Sintaxina 1/metabolismo
4.
J Biol Chem ; 288(32): 23050-63, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23801330

RESUMO

Calcium-dependent activator protein for secretion 1 (CAPS1) is a multidomain protein containing a Munc13 homology domain 1 (MHD1). Although CAPS1 and Munc13-1 play crucial roles in the priming stage of secretion, their functions are non-redundant. Similar to Munc13-1, CAPS1 binds to syntaxin-1, a key t-SNARE protein in neurosecretion. However, whether CAPS1 interacts with syntaxin-1 in a similar mode to Munc13-1 remains unclear. Here, using yeast two-hybrid assays followed by biochemical binding experiments, we show that the region in CAPS1 consisting of the C-terminal half of the MHD1 with the corresponding C-terminal region can bind to syntaxin-1. Importantly, the binding mode of CAPS1 to syntaxin-1 is distinct from that of Munc13-1; CAPS1 binds to the full-length of cytoplasmic syntaxin-1 with preference to its "open" conformation, whereas Munc13-1 binds to the first 80 N-terminal residues of syntaxin-1. Unexpectedly, the majority of the MHD1 of CAPS1 is dispensable, whereas the C-terminal 69 residues are crucial for the binding to syntaxin-1. Functionally, a C-terminal truncation of 69 or 134 residues in CAPS1 abolishes its ability to reconstitute secretion in permeabilized PC12 cells. Our results reveal a novel mode of binding between CAPS1 and syntaxin-1, which play a crucial role in neurosecretion. We suggest that the distinct binding modes between CAPS1 and Munc13-1 can account for their non-redundant functions in neurosecretion. We also propose that the preferential binding of CAPS1 to open syntaxin-1 can contribute to the stabilization of the open state of syntaxin-1 during its transition from "closed" state to the SNARE complex formation.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurossecreção/fisiologia , Sintaxina 1/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Células PC12 , Mapeamento de Peptídeos , Ligação Proteica/fisiologia , Estabilidade Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/genética , Sintaxina 1/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA