Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37530518

RESUMO

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Assuntos
Produtos Agrícolas , Poliploidia , Sequência de Bases , Mapeamento Cromossômico/métodos , Mutação , Fenótipo , Produtos Agrícolas/genética , Genoma de Planta/genética , Edição de Genes
2.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260506

RESUMO

A Gram-negative, aerobic, rod-shaped bacterium, designated DM2-R-LB4T was isolated from Cannabis sativa L. 'Cheungsam' in Andong, Republic of Korea. The strain DM2-R-LB4T grew at temperatures of 15-45 °C (optimum, 30-37 °C), pH of 5.5-9 (optimum, 8.0), and 0-2 % (w/v) NaCl concentration (optimum, 0%). Phylogenetic analyses based on the 16S rRNA gene sequences revealed that strain DM2-R-LB4T is related to species of the genus Sphingomonas, and shared 97.8 and 97.5% similarity to Sphingomonas kyenggiensis KCTC 42244T and Sphingomonas leidyi DSM 4733T, respectively. The DNA G+C content was 67.9 mol% and genome analysis of the strain DM2-R-LB4T revealed that the genome size was 4 386 171 bp and contained 4 009 predicted protein-coding genes. The average nucleotide identity (ANI) values between strain DM2-R-LB4T and S. kyenggiensis KCTC 42244T, and S. leidyi DSM 4733T was 76.8 and 76.7 %, respectively, while the values of digital DNA-DNA hybridization (dDDH) were 20.7 and 20.6 %, respectively. C14 : 0 2-OH, C16 : 0, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) were the major fatty acids (>10 %) in the strain DM2-R-LB4T. The polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), sphingoglycolipid (SGL), glycolipid (GL), phospholipid (PL), and two unidentified polar lipids (L1 and L2). Ubiquinone-10 (Q-10) was the only respiratory quinone. The polyamine pattern was found to contain homospermidine, putrescine, and spermidine. The results of phylogenetic anlayses, polyphasic studies, revealed that strain DM2-R-LB4T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas cannabina sp. nov., is proposed. The type strain is DM2-R-LB4T (=KCTC 92075T = GDMCC 1.3018T).


Assuntos
Cannabis , Sphingomonas , RNA Ribossômico 16S/genética , Filogenia , Cannabis/genética , Fosfatidiletanolaminas , Composição de Bases , Ubiquinona/química , Espermidina/química , Microbiologia do Solo , Cloreto de Sódio , Putrescina , Cardiolipinas , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Análise de Sequência de DNA , Fosfolipídeos/química , Glicolipídeos/química , Fosfatidilcolinas , Glicoesfingolipídeos/análise , Nucleotídeos
3.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830075

RESUMO

This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gangliosídeos/biossíntese , Células-Tronco Mesenquimais/enzimologia , Nucleosídeo NM23 Difosfato Quinases/farmacologia , Neurônios/enzimologia , Sialiltransferases/antagonistas & inibidores , Animais , Humanos , Sialiltransferases/metabolismo , Suínos , Porco Miniatura
4.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171878

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.


Assuntos
Fibrose/terapia , Inflamação/terapia , Células-Tronco Mesenquimais/metabolismo , Adipócitos/citologia , Animais , Diferenciação Celular , Condrócitos/citologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Medicina Regenerativa/métodos
5.
Nat Genet ; 44(12): 1393-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143603

RESUMO

The transition to flowering is a major determinant of plant architecture, and variation in the timing of flowering can have profound effects on inflorescence architecture, flower production and yield. Here, we show that the tomato mutant terminating flower (tmf) flowers early and converts the multiflowered inflorescence into a solitary flower as a result of precocious activation of a conserved floral specification complex encoded by ANANTHA (AN) and FALSIFLORA (FA). Without TMF, the coordinated flowering process is disrupted, causing floral identity genes, such as AN and members of the SEPALLATA (SEP) family, to activate precociously, while the expression of flowering transition genes, such as FRUITFULL (FUL), is delayed. Indeed, driving AN expression precociously is sufficient to cause early flowering, and this expression transforms multiflowered inflorescences into normal solitary flowers resembling those of the Solanaceae species petunia and tobacco. Thus, by timing AN activation, TMF synchronizes flower formation with the gradual reproductive transition, which, in turn, has a key role in determining simple versus complex inflorescences.


Assuntos
Flores/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Meristema/genética , Mutação , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA