Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37769355

RESUMO

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Heterozigoto , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
2.
Cell Prolif ; 56(2): e13366, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478274

RESUMO

Hemogenic endothelium (HE) plays a pivotal and inevitable role in haematopoiesis and can generate all blood and endothelial lineage cells in the aorta-gonad-mesonephros of mouse embryos. Whether definitive HE can prospectively isolate pure HE from human pluripotent stem cells that can spontaneously differentiate into heterogeneous cells remains unknown. Here, we identified and validated a CD34dim subpopulation with hemogenic potential. We also purified CD34 cells with a CXCR4- CD73- phenotype as a definitive HE population that generated haematopoietic stem cells and lymphocytes. The frequency of CXCR4- CD73- CD34dim was evidently increased by bone morphogenetic protein 4, and purified HE cells differentiated into haematopoietic cells with myeloid and T lymphoid lineages including Vδ2+ subset of γ/δ T cells. We developed a simple method to purify HE cells that were enriched in CD34dim cells. We uncovered an initial step in differentiating haematopoietic lineage cells that could be applied to basic and translational investigations into regenerative medicine.


Assuntos
Hemangioblastos , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Hemangioblastos/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular , Hematopoese , Linhagem da Célula
3.
Parasit Vectors ; 15(1): 360, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207732

RESUMO

BACKGROUND: Encystation is one of the two processes comprising the life cycle of Giardia lamblia, a protozoan pathogen with tetraploid genome. Giardia lamblia Myb2 (GlMyb2) is a distinct encystation-induced transcription factor whose binding sites are found in the promoter regions of many encystation-induced genes, including its own. METHODS: Two sequential CRISPR/Cas9 experiments were performed to remove four glmyb2 alleles. The expression level of G. lamblia cyst wall protein 1 (GlCWP1), a well-known target gene of GlMyb2, was measured via western blotting and immunofluorescence assays. Chromatin immunoprecipitation experiments using anti-GlMyb2 antibodies were performed on the encysting G. lamblia cells. Quantitative real-time PCR was performed to confirm an expression of candidate GlMyb2-regulated genes by comparing the transcript level for each target candidate in wild-type and knockout mutant Giardia. The promoter region of glcwp1 was analyzed via deletion and point mutagenesis of the putative GlMyb2 binding sites in luciferase reporters. RESULTS: Characterization of the null glmyb2 mutant indicated loss of functions related to encystation, i.e. cyst formation, and expression of GlCWP1. The addition of the wild-type glmyb2 gene to the null mutant restored the defects in encystation. Chromatin immunoprecipitation experiments revealed dozens of target genes. Nineteen genes were confirmed as GlMyb2 regulons, which include the glmyb2 gene, six for cyst wall proteins, five for signal transduction, two for transporter, two for metabolic enzymes, and three with unknown functions. Detailed analysis on the promoter region of glcwp1 defined three GlMyb2 binding sites important in its encystation-induced expression. CONCLUSIONS: Our data confirm that GlMyb2 acts as a transcription activator especially during encystation by comparing the glmyb2 knockout mutant with the wild type. Further investigation using glmyb2 null mutant will provide knowledge regarding transcriptional apparatus required for the encystation process of G. lamblia.


Assuntos
Cistos , Giardia lamblia , Giardia lamblia/genética , Giardia lamblia/metabolismo , Humanos , Mutagênese , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Sci Adv ; 8(8): eabj6621, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213232

RESUMO

Direct lineage conversion holds great promise in the regenerative medicine field for restoring damaged tissues using functionally engineered counterparts. However, current methods of direct lineage conversion, even those using virus-mediated transgenic expression of tumorigenic factors, are extremely inefficient (~25%). Thus, advanced methodologies capable of revolutionizing efficiency and addressing safety concerns are key to clinical translation of these technologies. Here, we propose an extracellular vesicle (EV)-guided, nonviral, direct lineage conversion strategy to enhance transdifferentiation of fibroblasts to induced cardiomyocyte-like cells (iCMs). The resulting iCMs have typical cardiac Ca2+ transients and electrophysiological features and exhibit global gene expression profiles similar to those of cardiomyocytes. This is the first demonstration of the use of EVs derived from embryonic stem cells undergoing cardiac differentiation as biomimetic tools to induce cardiac reprogramming with extremely high efficiency (>60%), establishing a general, more readily accessible platform for generating a variety of specialized somatic cells through direct lineage conversion.

5.
Clin Transl Sci ; 15(2): 501-513, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34719115

RESUMO

On October 2020, the US Food and Drug Administration (FDA) approved remdesivir as the first drug for the treatment of coronavirus disease 2019 (COVID-19), increasing remdesivir prescriptions worldwide. However, potential cardiovascular (CV) toxicities associated with remdesivir remain unknown. We aimed to characterize the CV adverse drug reactions (ADRs) associated with remdesivir using VigiBase, an individual case safety report database of the World Health Organization (WHO). Disproportionality analyses of CV-ADRs associated with remdesivir were performed using reported odds ratios and information components. We conducted in vitro experiments using cardiomyocytes derived from human pluripotent stem cell cardiomyocytes (hPSC-CMs) to confirm cardiotoxicity of remdesivir. To distinguish drug-induced CV-ADRs from COVID-19 effects, we restricted analyses to patients with COVID-19 and found that, after adjusting for multiple confounders, cardiac arrest (adjusted odds ratio [aOR]: 1.88, 95% confidence interval [CI]: 1.08-3.29), bradycardia (aOR: 2.09, 95% CI: 1.24-3.53), and hypotension (aOR: 1.67, 95% CI: 1.03-2.73) were associated with remdesivir. In vitro data demonstrated that remdesivir reduced the cell viability of hPSC-CMs in time- and dose-dependent manners. Physicians should be aware of potential CV consequences following remdesivir use and implement adequate CV monitoring to maintain a tolerable safety margin.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/efeitos adversos , Tratamento Farmacológico da COVID-19 , Doenças Cardiovasculares/induzido quimicamente , Farmacovigilância , SARS-CoV-2 , Monofosfato de Adenosina/efeitos adversos , Alanina/efeitos adversos , Bases de Dados Factuais , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Estudos Retrospectivos , Organização Mundial da Saúde
6.
Parasit Vectors ; 14(1): 182, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789729

RESUMO

BACKGROUND: Polo-like kinases (PLKs) are conserved serine/threonine kinases that regulate the cell cycle. To date, the role of Giardia lamblia PLK (GlPLK) in cells has not been studied. Here, we report our investigation on the function of GlPLK to provide insight into the role of this PKL in Giardia cell division, especially during cytokinesis and flagella formation. METHODS: To assess the function of GIPLK, Giardia trophozoites were treated with the PLK-specific inhibitor GW843286X (GW). Using a putative open reading frame for the PLK identified in the Giardia genomic database, we generated a transgenic Giardia expressing hemagglutinin (HA)-tagged GlPLK and used this transgenic for immunofluorescence assays (IFAs). GlPLK expression was knocked down using an anti-glplk morpholino to observe its effect on the number of nuclei number and length of flagella. Giardia cells ectopically expressing truncated GlPLKs, kinase domain + linker (GlPLK-KDL) or polo-box domains (GlPLK-PBD) were constructed for IFAs. Mutant GlPLKs at Lys51, Thr179 and Thr183 were generated by site-directed mutagenesis and then used for the kinase assay. To elucidate the role of phosphorylated GlPLK, the phosphorylation residues were mutated and expressed in Giardia trophozoites RESULTS: After incubating trophozoites with 5 µM GW, the percentage of cells with > 4 nuclei and longer caudal and anterior flagella increased. IFAs indicated that GlPLK was localized to basal bodies and flagella and was present at mitotic spindles in dividing cells. Morpholino-mediated GlPLK knockdown resulted in the same phenotypes as those observed in GW-treated cells. In contrast to Giardia expressing GlPLK-PBD, Giardia expressing GlPLK-KDL was defective in terms of GIPLK localization to mitotic spindles and had altered localization of the basal bodies in dividing cells. Kinase assays using mutant recombinant GlPLKs indicated that mutation at Lys51 or at both Thr179 and Thr183 resulted in loss of kinase activity. Giardia expressing these mutant GlPLKs also demonstrated defects in cell growth, cytokinesis and flagella formation. CONCLUSIONS: These data indicate that GlPLK plays a role in Giardia cell division, especially during cytokinesis, and that it is also involved in flagella formation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinese , Flagelos/fisiologia , Giardia lamblia/enzimologia , Giardia lamblia/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Protozoários/genética , Giardia lamblia/genética , Fosforilação , Proteínas de Protozoários/metabolismo , Trofozoítos/crescimento & desenvolvimento , Quinase 1 Polo-Like
7.
Biomaterials ; 266: 120472, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120201

RESUMO

Human embryonic stem cells-derived endothelial progenitor cells (hEPCs) were utilized as cell therapeutics for the treatment of ischemic diseases. However, in vivo tracking of hEPCs for predicting their therapeutic efficacy is very difficult. Herein, we developed bioorthogonal labeling strategy of hEPCs that could non-invasively track them after transplantation in hind limb ischemia models. First, hEPCs were treated with tetraacylated N-azidomannosamine (Ac4ManNAz) for generating unnatural azide groups on the hEPCs surface. Second, near-infrared fluorescence (NIRF) dye, Cy5, conjugated dibenzocylooctyne (DBCO-Cy5) was chemically conjugated to the azide groups on the hEPC surface via copper-free click chemistry, resulting Cy5-hEPCs. The bioorthogonally labeled Cy5-hEPCs showed strong NIRF signal without cytotoxicity and functional perturbation in tubular formation, oxygen consumption and paracrine effect of hEPCs in vitro. In hind limb ischemia models, the distribution and migration of transplanted Cy5-hEPCs were successfully monitored via fluorescence molecular tomography (FMT) for 28 days. Notably, blood reperfusion and therapeutic neovascularization effects were significantly correlated with the initial transplantation forms of Cy5-hEPCs such as 'condensed round shape' and 'spread shape' in the ischemic lesion. The condensed transplanted Cy5-hEPCs substantially increased the therapeutic efficacy of hind limb ischemia, compared to that of spread Cy5-hEPCs. Therefore, our new stem cell labeling strategy can be used to predict therapeutic efficacy in hind limb ischemia and it can be applied a potential application in developing cell therapeutics for regenerative medicine.


Assuntos
Células Progenitoras Endoteliais , Animais , Química Click , Modelos Animais de Doenças , Membro Posterior , Humanos , Isquemia/diagnóstico por imagem , Isquemia/terapia , Neovascularização Fisiológica , Células-Tronco , Tomografia
8.
Antiviral Res ; 184: 104955, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091434

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is considered as the most significant global public health crisis of the century. Several drug candidates have been suggested as potential therapeutic options for COVID-19, including remdesivir, currently the only authorized drug for use under an Emergency Use Authorization. However, there is only limited information regarding the safety profiles of the proposed drugs, in particular drug-induced cardiotoxicity. Here, we evaluated the antiviral activity and cardiotoxicity of remdesivir using cardiomyocytes-derived from human pluripotent stem cells (hPSC-CMs) as an alternative source of human primary cardiomyocytes (CMs). In this study, remdesivir exhibited up to 60-fold higher antiviral activity in hPSC-CMs compared to Vero E6 cells; however, it also induced moderate cardiotoxicity in these cells. To gain further insight into the drug-induced arrhythmogenic risk, we assessed QT interval prolongation and automaticity of remdesivir-treated hPSC-CMs using a multielectrode array (MEA). As a result, the data indicated a potential risk of QT prolongation when remdesivir is used at concentrations higher than the estimated peak plasma concentration. Therefore, we conclude that close monitoring of the electrocardiographic/QT interval should be advised in SARS-CoV-2-infected patients under remdesivir medication, in particular individuals with pre-existing heart conditions.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , COVID-19/virologia , Miócitos Cardíacos/virologia , Células-Tronco Pluripotentes/citologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Amidas/farmacologia , Animais , Antimaláricos/farmacologia , COVID-19/complicações , Chlorocebus aethiops , Cloroquina/farmacologia , Eletrocardiografia , Citometria de Fluxo , Cardiopatias/complicações , Humanos , Hidroxicloroquina/farmacologia , Microscopia de Fluorescência , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/virologia , Pirazinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Ensaio de Placa Viral , Tratamento Farmacológico da COVID-19
9.
Biomedicines ; 8(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121085

RESUMO

Despite recent advances in clinical stem cell therapy applications based on human pluripotent stem cells (hPSCs), potential teratoma formation due to the presence of residual undifferentiated hPSCs remains a serious risk factor that challenges widespread clinical application. To overcome this risk, a variety of approaches have been developed to eliminate the remaining undifferentiated hPSCs via selective cell death induction. Our study seeks to identify natural flavonoids that are more potent than quercetin (QC), to selectively induce hPSC death. Upon screening in-house flavonoids, luteolin (LUT) is found to be more potent than QC to eliminate hPSCs in a p53-dependent manner, but not hPSC-derived smooth muscle cells or perivascular progenitor cells. Particularly, treating human embryonic stem cell (hESC)-derived cardiomyocytes with LUT efficiently eliminates the residual hESCs and only results in marginal effects on cardiomyocyte (CM) functions, as determined by calcium influx. Considering the technical limitations of isolating CMs due to a lack of exclusive surface markers at the end of differentiation, LUT treatment is a promising approach to minimize teratoma formation risk.

10.
PLoS One ; 15(5): e0232899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392240

RESUMO

Various nanopatterning techniques have been developed to improve cell proliferation and differentiation efficiency. As we previously reported, nanopillars and pores are able to sustain human pluripotent stem cells and differentiate pancreatic cells. From this, the nanoscale patterns would be effective environment for the co-culturing of epithelial and mesenchymal cell types. Interestingly, the nanopatterning selectively reduced the proliferative rate of mesenchymal cells while increasing the expression of adhesion protein in epithelial type cells. Additionally, co-cultured cells on the nanopatterning were not negatively affected in terms of cell function metabolic ability or cell survival. This is in contrast to conventional co-culturing methods such as ultraviolet or chemical treatments. The nanopatterning appears to be an effective environment for mesenchymal co-cultures with typically low proliferative rates cells such as astrocytes, neurons, melanocytes, and fibroblasts without using potentially damaging treatments.


Assuntos
Técnicas de Cocultura/instrumentação , Células Epiteliais , Células-Tronco Mesenquimais , Nanoestruturas , Animais , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Propriedades de Superfície
11.
Nat Commun ; 10(1): 3123, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311935

RESUMO

Since both myocardium and vasculature in the heart are excessively damaged following myocardial infarction (MI), therapeutic strategies for treating MI hearts should concurrently target both so as to achieve true cardiac repair. Here we demonstrate a concomitant method that exploits the advantages of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) and human mesenchymal stem cell-loaded patch (hMSC-PA) to amplify cardiac repair in a rat MI model. Epicardially implanted hMSC-PA provide a complimentary microenvironment which enhances vascular regeneration through prolonged secretion of paracrine factors, but more importantly it significantly improves the retention and engraftment of intramyocardially injected hiPSC-CMs which ultimately restore the cardiac function. Notably, the majority of injected hiPSC-CMs display adult CMs like morphology suggesting that the secretomic milieu of hMSC-PA constitutes pleiotropic effects in vivo. We provide compelling evidence that this dual approach can be a promising means to enhance cardiac repair on MI hearts.


Assuntos
Coração/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Regeneração , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Injeções Intralesionais , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Ratos , Ratos Endogâmicos F344 , Resultado do Tratamento
12.
Colloids Surf B Biointerfaces ; 180: 384-392, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082776

RESUMO

Precise detection of undifferentiated human pluripotent stem cells (hPSCs) and their entire subsequent elimination are incredibly important in preventing teratoma formations after transplantation. Recently, electrochemical sensing platforms have demonstrated immense potential as a new tool to detect remaining hPSCs in label-free and non-destructive manner. Nevertheless, one of the critical huddles of this electrochemical sensing approach is its low sensitivity since even low concentrations of remaining hPSCs were reported to form teratoma once transplanted. To address this issue, in this study, we report an engineering-based approach to improve the sensitivity of electrochemical sensing platform for hPSC detection. By optimizing the density of gold nanostructure and the matrigel concentration to improve both electro-catalytic property and biocompatibility, the sensitivity of the developed platform toward hESCs detection could reach 12,500 cells/chip, which is close to the known critical concentration of hPSCs (˜10,000 cells) that induce teratoma formation in vivo. Remarkably, the electrochemical signals were not detectable from other types of stem cell-derived endothelial cells (CB-EPCs) even at high concentrations of CB-EPCs (40,000 cells/chip), proving the high selectivity of the developed platform toward hPSC detection. Hence, the developed platform could be highly useful to solve the safety issues that are related with clinical application of hPSC-derived cells.


Assuntos
Eletroquímica/métodos , Ouro/química , Células-Tronco Embrionárias Humanas/citologia , Nanoestruturas/química , Eletrodos , Células Endoteliais/citologia , Sangue Fetal/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Nanoestruturas/ultraestrutura , Compostos de Estanho/química
13.
Stem Cells ; 37(5): 623-630, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721559

RESUMO

The derivation of human embryonic stem cells (hESCs) by somatic cell nuclear transfer (SCNT) has prompted a re-emerging interest in using such cells for therapeutic cloning. Despite recent advancements in derivation protocols, the functional potential of CHA-NT4 derived cells is yet to be elucidated. For this reason, this study sought to differentiate CHA-NT4 cells toward an endothelial lineage in order to evaluate in vitro and in vivo functionality. To initial differentiation, embryoid body formation of CHA-NT4 was mediated by concave microwell system which was optimized for hESC-endothelial cell (EC) differentiation. The isolated CD31+ cells exhibited hallmark endothelial characteristics in terms of morphology, tubule formation, and ac-LDL uptake. Furthermore, CHA-NT4-derived EC (human nuclear transfer [hNT]-ESC-EC) transplantation in hind limb ischemic mice rescued the hind limb and restored blood perfusion. These findings suggest that hNT-ESC-EC are functionally equivalent to hESC-ECs, warranting further study of CHA-NT4 derivatives in comparison to other well established pluripotent stem cell lines. This revival of human SCNT-ESC research may lead to interesting insights into cellular behavior in relation to donor profile, mitochondrial DNA, and oocyte quality. Stem Cells 2019;37:623-630.


Assuntos
Diferenciação Celular/genética , Células Endoteliais/transplante , Células-Tronco Embrionárias Humanas/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Animais , Membro Posterior/patologia , Membro Posterior/transplante , Humanos , Isquemia/terapia , Camundongos , Técnicas de Transferência Nuclear
14.
J Invest Dermatol ; 139(3): 692-701, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30393080

RESUMO

Much of our understanding of human biology and the function of mammalian cells in tissue regeneration have been derived from mechanistically and genetically manipulated rodent models. However, current models examining epidermal wound repair fail to address both the cross-species mechanistic and immunogenic differences simultaneously. Herein, we describe a multifaceted approach intended to better recapitulate human skin recovery in rodent models. First, immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice were intravenously inoculated with human hematopoietic stem cells to become, in essence, humanized, and capable of initiating an adaptive immune response. Next, a chimney-shaped mechanical device was implanted onto the excisional wound site to prevent healing by primary intention (contraction) and expedite cell transplantation. Subsequently, cell therapy was administered by transplanting cord blood-derived endothelial progenitor cells or human pluripotent stem cell-derived endothelial cells into the wound site to examine the regeneration process at a histological level. This study demonstrates human cutaneous repair in a murine model by addressing both the mechanistic and immunogenic differences in the epidermis. We further show human leukocyte recruitment in damaged tissue and improved healing by secondary intention in the transplanted groups, highlighting the need for useful preclinical animal models to better understand leukocyte function in human (tissue repair and) regeneration.


Assuntos
Imunidade Adaptativa/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Pele/lesões , Cicatrização/fisiologia , Ferimentos e Lesões/terapia , Animais , Biópsia por Agulha , Modelos Animais de Doenças , Células Endoteliais/transplante , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Distribuição Aleatória , Regeneração/fisiologia , Ferimentos e Lesões/imunologia
15.
Korean J Parasitol ; 55(4): 375-384, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28877568

RESUMO

Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.


Assuntos
Actinina/imunologia , Células Dendríticas/imunologia , Interações Hospedeiro-Parasita/imunologia , Interleucina-10/biossíntese , Linfócitos T Reguladores/imunologia , Trichomonas vaginalis/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/imunologia , Humanos , Camundongos Endogâmicos BALB C , Compostos Orgânicos/imunologia
16.
J Microbiol Biotechnol ; 27(10): 1844-1854, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28838225

RESUMO

Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2 (Tvα-actinin 2) has been used to diagnose trichomoniasis. Tvα-actinin 2 was dissected into three parts; the N-terminal, central, and C-terminal portions of the protein (#1, #2, and #3, respectively). Western blot of these Tvα-actinin 2 proteins with pooled patients' sera indicated that #2 and #3, but not #1, reacted with those sera. Immunofluorescence assays of two different forms of T. vaginalis (trophozoites and amoeboid forms), using anti-Tvα-actinin 2 antibodies, showed localization of Tvα-actinin 2 close to the plasma membranes of the amoeboid form. Fractionation experiments indicated the presence of Tvα-actinin 2 in cytoplasmic, membrane, and secreted proteins of T. vaginalis. Binding of fluorescence-labeled Trichomonas to vaginal epithelial cells and prostate cells was decreased in the antibody blocking experiment using anti-Tvα-actinin 2 antibodies. Pretreatment of T. vaginalis with anti-rTvα-actinin 2 antibodies also resulted in reduction in its cytotoxicity. Flow cytometry, ligand-binding immunoblotting assay, and observation by fluorescence microscopy were used to detect the binding of recombinant Tvα-actinin 2 to human epithelial cell lines. Specifically, the truncated N-terminal portion of Tvα-actinin 2, Tvα-actinin 2 #1, was shown to bind directly to vaginal epithelial cells. These data suggest that α-actinin 2 is one of the virulence factors responsible for the pathogenesis of T. vaginalis by serving as an adhesin to the host cells.


Assuntos
Actinina/fisiologia , Trichomonas vaginalis/metabolismo , Actinina/genética , Antígenos de Protozoários/genética , Antígenos de Protozoários/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Linhagem Celular , Células Epiteliais , Feminino , Regulação da Expressão Gênica , Humanos , Proteínas Recombinantes , Tricomoníase/imunologia , Trichomonas vaginalis/genética , Trichomonas vaginalis/imunologia , Trofozoítos , Vagina , Fatores de Virulência
17.
Stem Cells ; 35(9): 2037-2049, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28543863

RESUMO

Basic fibroblast growth factor (bFGF) supplementation is critical to maintain the pluripotency of human pluripotent stem cells (hPSCs) through activation of PI3K/AKT, rather than MEK/ERK pathway. Thus, elaborate molecular mechanisms that preserve PI3K/AKT signaling upon bFGF stimulation may exist in hPSCs. Protein arginine methyltransferase 8 (PRMT8) was expressed and then its level gradually decreased during spontaneous differentiation of human embryonic stem cells (hESCs). PRMT8 loss- or gain-of-function studies demonstrated that PRMT8 contributed to longer maintenance of hESC pluripotency, even under bFGF-deprived conditions. Direct interaction of membrane-localized PRMT8 with p85, a regulatory subunit of PI3K, was associated with accumulation of phosphoinositol 3-phosphate and consequently high AKT activity. Furthermore, the SOX2 induction, which was controlled by the PRMT8/PI3K/AKT axis, was linked to mesodermal lineage differentiation. Thus, we propose that PRMT8 in hESCs plays an important role not only in maintaining pluripotency but also in controlling mesodermal differentiation through bFGF signaling toward the PI3K/AKT/SOX2 axis. Stem Cells 2017;35:2037-2049.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Pluripotentes/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Fenótipo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Korean J Parasitol ; 55(2): 213-218, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28506046

RESUMO

Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis. The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis=1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-1ß, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.


Assuntos
Células Epiteliais/parasitologia , Próstata/parasitologia , Trichomonas vaginalis/patogenicidade , Células Cultivadas , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Próstata/citologia , Prostatite/parasitologia , Fatores de Tempo , Tricomoníase/parasitologia
19.
ACS Cent Sci ; 2(9): 604-607, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27725957

RESUMO

Pluripotent stem cells (PSC) are promising resources for regeneration therapy, but teratoma formation is one of the critical problems for safe clinical application. After differentiation, the precise detection and subsequent elimination of undifferentiated PSC is essential for teratoma-free stem cell therapy, but a practical procedure is yet to be developed. CDy1, a PSC specific fluorescent probe, was investigated for the generation of reactive oxygen species (ROS) and demonstrated to induce selective death of PSC upon visible light irradiation. Importantly, the CDy1 and/or light irradiation did not negatively affect differentiated endothelial cells. The photodynamic treatment of PSC with CDy1 and visible light irradiation confirmed the inhibition of teratoma formation in mice, and suggests a promising new approach to safe PSC-based cell therapy.

20.
Biochem Biophys Res Commun ; 479(4): 779-786, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27693784

RESUMO

Labeling of stem cells aims to distinguish transplanted cells from host cells, understand in vivo fate of transplanted cells, particularly important in stem cell therapy. Adipose-derived mesenchymal stem cells (ASCs) are considered as an emerging therapeutic option for tissue regeneration, but much remains to be understood regarding the in vivo evidence. In this study, a simple and efficient cell labeling method for labeling and tracking of stem cells was developed based on bio-orthogonal copper-free click chemistry, and it was applied in a mouse hindlimb ischemia model. The human ASCs were treated with tetra-acetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz) to generate glycoprotein with unnatural azide groups on the cell surface, and the generated azide groups were fluorescently labeled by specific binding of dibenzylcyclooctyne-conjugated Cy5 (DBCO-Cy5). The safe and long-term labeling of the hASCs by this method was first investigated in vitro. Then the DBCO-Cy5-hASCs were transplanted into the hindlimb ischemia mice model, and we could monitor and track in vivo fate of the cells using optical imaging system. We could clearly observe the migration potent of the hASCs toward the ischemic lesion. This approach to design and tailor new method for labeling of stem cells may be useful to provide better understanding on the therapeutic effects of transplanted stem cells into the target diseases.


Assuntos
Rastreamento de Células/métodos , Isquemia/terapia , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Animais , Azidas/química , Química Click/métodos , Modelos Animais de Doenças , Corantes Fluorescentes/química , Membro Posterior , Humanos , Imageamento Tridimensional , Isquemia/patologia , Transplante de Células-Tronco Mesenquimais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA