Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int Immunopharmacol ; 136: 112284, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823179

RESUMO

Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/ß-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.


Assuntos
Calcineurina , Catepsina B , Citocinas , Flavonoides , Camundongos Endogâmicos C57BL , Pancreatite , Animais , Pancreatite/tratamento farmacológico , Pancreatite/imunologia , Pancreatite/patologia , Pancreatite/induzido quimicamente , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Citocinas/metabolismo , Catepsina B/metabolismo , Camundongos , Masculino , Calcineurina/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Ceruletídeo , NF-kappa B/metabolismo , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Transdução de Sinais/efeitos dos fármacos , Arginina/metabolismo , Modelos Animais de Doenças , Proteínas Quinases Ativadas por AMP/metabolismo
2.
Curr Issues Mol Biol ; 46(1): 884-895, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275670

RESUMO

Arecae pericarpium (AP), the fruit peel of the betel palm, is a traditional Oriental herbal medicine. AP is used to treat various diseases and conditions, such as ascites, edema, and urinary retention, in traditional Korean medicine. Recent studies have demonstrated its anti-obesity and antibacterial effects; however, its anti-neuroinflammatory effects have not yet been reported. Therefore, we investigated the anti-neuroinflammatory effects of AP on lipopolysaccharide (LPS)-stimulated mouse microglia in this study. To determine the anti-neuroinflammatory effects of AP on BV2 microglial cells, we examined the production of nitric oxide (NO) using Griess assay and assessed the mRNA expression levels of inflammatory mediators, such as inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, and pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, using a real-time reverse transcription-polymerase chain reaction. Furthermore, we determined the levels of mitogen-activated protein kinases and IκBα via Western blotting to understand the regulating mechanisms of AP. AP treatment decreased NO production in LPS-stimulated BV2 cells. Additionally, AP suppressed the expression of iNOS and COX-2 and the production of pro-inflammatory cytokines. AP also inhibited the activation of p38 and nuclear factor-kappa B (NF-κB) in LPS-stimulated BV2 cells. Therefore, AP exerts anti-neuroinflammatory effects via inactivation of the p38 and NF-κB pathways.

3.
Int Immunopharmacol ; 124(Pt B): 111073, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844468

RESUMO

Guggulsterone (GS) is a phytosterol used to treat inflammatory diseases. Although many studies have examined the anti-inflammatory activities of GS, the detailed mechanisms of GS in lipopolysaccharide (LPS)-induced inflammation and endotoxemia have not yet been examined. Therefore, we investigated the anti-inflammatory effects of GS on LPS-induced inflammation. In murine peritoneal macrophages, the anti-inflammatory activity of GS was primarily mediated by heme oxygenase-1 (HO-1) induction. HO-1 induction by GS was mediated by GSH depletion and reactive oxygen species (ROS) production. The ROS generated by GS caused the phosphorylation of GSK3ß (ser9/21) and p38, leading to the translocation of nuclear factor erythroid-related factor 2 (Nrf2), which ultimately induced HO-1. In addition, GS pretreatment significantly inhibited inducible nitric oxide synthase (iNOS), iNOS-derived NO, and COX-2 protein and mRNA expression, and production of COX-derived prostaglandin PGE2, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α). In a mouse model of endotoxemia, GS treatment prolonged survival and inhibited the expression of inflammatory mediators, including IL-1ß, IL-6, and TNF-α. GS treatment also inhibited LPS-induced liver injury. These results suggest that GS-induced HO-1 could exert anti-inflammatory effects via ROS-dependent GSK (ser21/9)-p38 phosphorylation and nuclear translocation of Nrf2.


Assuntos
Endotoxemia , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
4.
Mol Med Rep ; 28(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37732516

RESUMO

Chronic pancreatitis (CP) is a pancreatic inflammatory disease associated with histological changes, including fibrosis, acinar cell loss and immune cell infiltration, and leads to damage of the pancreas, which results in pain, weight loss and loss of pancreas function. Catechin or catechin hydrate (CH) has antioxidant, anticancer and immune­regulatory effects. However, unlike other catechins, the antifibrotic effects of (+)­CH have not been widely studied in many diseases, including CP. Therefore, the anti­fibrotic effects of (+)­CH against CP were evaluated in the present study. To assess the prophylactic effects of CH, (+)­CH (1, 5 or 10 mg/kg) or ethanol was administered 1 h before first cerulein (50 µg/kg) injection. To assess the therapeutic effects, (+)­CH (5 mg/kg) or ethanol was administered after cerulein injection for one or two weeks. In both methods, cerulein was injected intraperitoneally into mice once every hour, six times a day, four times a week, for a total of three weeks, to induce CP. The data showed that (+)­CH markedly inhibited glandular destruction and inflammation during CP. Moreover, (+)­CH prevented pancreatic stellate cell (PSC) activation and the production of extracellular matrix components, such as fibronectin 1 and collagens, which suggested that it may act as a novel therapeutic agent. Furthermore, the mechanism and effectiveness of (+)­CH on pancreatic fibrosis were investigated in isolated PSCs. (+)­CH suppressed the activation of Smad2 and fibrosis factors that act through transforming growth factor­ß (TGF­ß) or platelet­derived growth factor. These findings suggest that (+)­CH exhibits antifibrotic effects in cerulein­induced CP by inactivating TGF­ß/Smad2 signaling.


Assuntos
Catequina , Pancreatopatias , Pancreatite Crônica , Animais , Camundongos , Catequina/farmacologia , Ceruletídeo , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/tratamento farmacológico , Pâncreas , Etanol/efeitos adversos
5.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293111

RESUMO

Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent. Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeoksan (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. In addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced AKI by downregulating the MAPK and NF-κB pathways.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Camundongos , Animais , NF-kappa B/metabolismo , Cisplatino/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Creatinina , Interleucina-6/metabolismo , Transdução de Sinais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Antineoplásicos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo
6.
J Investig Med ; 70(5): 1285-1292, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35078865

RESUMO

Chronic pancreatitis (CP) is a pathological fibroinflammatory syndrome of the pancreas. Currently, there are no therapeutic agents available for treating CP-associated pancreatic fibrosis. Fraxinus rhynchophylla (FR) reportedly exhibits anti-inflammatory, antioxidative and antitumor activities. Although FR possesses numerous properties associated with the regulation of diverse diseases, the effects of FR on CP remain unknown. Herein, we examined the effects of FR on CP. For CP induction, mice were intraperitoneally administered cerulein (50 µg/kg) 6 times a day, 4 days per week for 3 weeks. FR extract (100 or 400 mg/kg) or saline (control group) was intraperitoneally injected 1 hour before the first cerulein injection. After 3 weeks, the pancreas was harvested for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the antifibrogenic effects and regulatory mechanisms of FR. Administration of FR significantly inhibited histological damage in the pancreas, increased pancreatic acinar cell survival, decreased PSC activation and collagen deposition, and decreased pro-inflammatory cytokines. Moreover, FR treatment inhibited the expression of fibrotic mediators, such as α-smooth muscle actin (α-SMA), collagen, fibronectin 1, and decreased pro-inflammatory cytokines in isolated PSCs stimulated with transforming growth factor (TGF)-ß. Furthermore, FR treatment suppressed the phosphorylation of Smad 2/3 but not of Smad 1/5 in TGF-ß-stimulated PSCs. Collectively, these results suggest that FR ameliorates pancreatic fibrosis by inhibiting PSC activation during CP.


Assuntos
Fraxinus , Pancreatite Crônica , Animais , Ceruletídeo/metabolismo , Ceruletídeo/farmacologia , Ceruletídeo/uso terapêutico , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno/uso terapêutico , Fibrose , Humanos , Camundongos , Pâncreas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Casca de Planta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
7.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206763

RESUMO

Acute pancreatitis (AP) is an inflammatory disorder, involving acinar cell death and the release of inflammatory cytokines. Currently, there are limited effective therapeutic agents for AP. Betulinic acid (BA) is a pentacyclic triterpenoid extracted from Betula platyphylla that has been shown to have anti-inflammatory effects. In this study, we aimed to investigate the effects of BA on AP and elucidate the potential underlying mechanisms. AP was induced in mice through six intraperitoneal injections of cerulein. After the last cerulein injection, the mice were sacrificed. Our results revealed that pre- and post-treatment with BA significantly reduced the severity of pancreatitis, as evidenced by a decrease in histological damage in the pancreas and lung, serum amylase and lipase activity and pancreatic myeloperoxidase activity. Furthermore, BA pretreatment reduced proinflammatory cytokine production, augmentation of chemokines, and infiltration of macrophages and neutrophils in the pancreas of AP mice. In addition, mice that were pretreated with BA showed a reduction in Iκ-Bα degradation and nuclear factor-kappa B (NF-κB) binding activity in the pancreas. Moreover, BA reduced the production of proinflammatory cytokines and NF-κB activation in pancreatic acinar cells (PACs). These findings suggest that BA may have prophylactic and therapeutic effects on AP via inhibition of the NF-κB signaling pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Pancreatite/tratamento farmacológico , Triterpenos Pentacíclicos/uso terapêutico , Amilases/sangue , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Lipase/sangue , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Triterpenos Pentacíclicos/farmacologia , Peroxidase/metabolismo , Transdução de Sinais , Ácido Betulínico
8.
Artigo em Inglês | MEDLINE | ID: mdl-33976703

RESUMO

Nardostachys spp. have been widely used in Asia as a folk medicine. In particular, the extracts of Nardostachys jatamansi, a species that grows in China, India, and Tibet, have been used to treat mental disorders, hyperlipidemia, hypertension, and convulsions. In this investigation, the potential of 20% aqueous ethanol extract of N. jatamansi (NJ20) as a botanical drug was explored by chemically investigating its constituents and its anti-neuroinflammatory effects on lipopolysaccharide- (LPS-) induced in vitro and in vivo models. Nine secondary metabolites were isolated and identified from NJ20, and quantitative analysis of these metabolites revealed desoxo-narchinol A as the major constituent. In LPS-challenged cells, pretreatment with NJ20 inhibited the LPS-induced excessive production of proinflammatory mediators, such as nitric oxide, prostaglandin E2, interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor-α. NJ20 also attenuated the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2. Additionally, pre-intraperitoneal injection of NJ20 downregulated the mRNA overexpression of IL-1ß, IL-6, and iNOS in the prefrontal cortex, hypothalamus, and hippocampus of the LPS-stimulated C57BL/c mouse model. Chemical and biological investigations of NJ20 revealed that it is a potential inhibitor of LPS-induced neuroinflammatory responses in microglial cells and mouse models. The major active constituent of NJ20, desoxo-narchinol A, demonstrated anti-neuroinflammatory effects. Hence, our findings indicate that NJ20 may be a promising herbal mixture for developing a functional product and/or herbal drug for treating neuroinflammatory diseases.

9.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572597

RESUMO

Cisplatin is the most widely used chemotherapeutic agent. However, it often causes nephrotoxicity, which results in acute kidney injury (AKI). Therefore, we urgently need a drug that can reduce the nephrotoxicity induced by cisplatin. Loganin is a major iridoid glycoside isolated from Corni fructus that has been used as an anti-inflammatory agent in various pathological models. However, the renal protective activity of loganin remains unclear. In this study, to examine the protective effect of loganin on cisplatin-induced AKI, male C57BL/6 mice were orally administered with loganin (1, 10, and 20 mg/kg) 1 h before intraperitoneal injection of cisplatin (10 mg/kg) and sacrificed at three days after the injection. The administration of loganin inhibited the elevation of blood urea nitrogen (BUN) and creatinine (CREA) in serum, which are used as biomarkers of AKI. Moreover, histological kidney injury, proximal tubule damages, and renal cell death, such as apoptosis and ferroptosis, were reduced by loganin treatment. Also, pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, reduced by loganin treatment. Furthermore, loganin deactivated the extracellular signal-regulated kinases (ERK) 1 and 2 during AKI. Taken together, our results suggest that loganin may attenuate cisplatin-induced AKI through the inhibition of ERK1/2.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Iridoides/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Morte Celular/efeitos dos fármacos , Creatinina/sangue , Citocinas/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Int Immunopharmacol ; 88: 106900, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829089

RESUMO

Acute pancreatitis (AP) refers to inflammation in the pancreas, which may lead to death in severe cases. Coenzyme Q10 (Q10), generally known to generate energy, plays an important role as an anti-oxidant and anti-inflammatory effector. Here, we showed the effect of Q10 on inflammatory response in murine AP model. For this study, we induced AP by injection of cerulein intraperitoneally or pancreatic duct ligation (PDL) in mice. The level of cytokines and digestive enzymes were measured in pancreas, and blood. All pancreatic tissues were excised for investigation such as histological changes, infiltration of immune cells. Administration of Q10 attenuated the severity of AP and its associated pulmonary complication as shown by reduction of acinar cell death, parenchymal edema, inflammatory cell infiltration and alveolar thickening in both cerulein-induced AP and PDL-induced AP. Moreover, reduction of the cytokines such as interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α were observed in pancreas and pancreatic acinar cells by Q10. Furthermore, Q10 reduced the infiltration of immune cells such as monocytes and neutrophils and augmentation of chemokines such as CC chemokine-2 (CCL2) and C-X-C chemokine-2 (CXCL2) in pancreas of AP mice. In addition, Q10 deactivates the phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in pancreas. In conclusion, these observations suggest that Q10 could attenuate the pancreatic damage and its associated pulmonary complications via inhibition of inflammatory cytokines and inflammatory cell infiltration and that the deactivation of ERK and JNK by Q10 might contribute to the attenuation of AP.


Assuntos
Anti-Inflamatórios/uso terapêutico , Pancreatite/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Ceruletídeo , Citocinas/genética , Citocinas/imunologia , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/imunologia , Pancreatite/patologia , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA