Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0297512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306362

RESUMO

The immune-enhancing activity of the combination of Platycodon grandiflorum and Salvia plebeian extracts (PGSP) was evaluated through macrophage activation using RAW264.7 cells. PGSP (250-1000 µg/mL) showed a higher release of NO in a dose-dependent manner. The results showed that PGSP could significantly stimulate the production of PGE2, COX-2, TNF-α, IL-1ß, and IL-6 in RAW264.7 cells and promote iNOS, COX-2, TNF-α, IL-1ß, IL-4, and IL-6 mRNA expression. Western blot analysis demonstrated that the protein expression of iNOS and COX-2 and the phosphorylation of ERK, JNK, p38, and NF-κB p65 were greatly increased in PGSP-treated cells. PGSP also promoted the phagocytic activity of RAW264.7 cells. All these results indicated that PGSP might activate macrophages through MAPK and NF-κB signaling pathways. Taken together, PGSP may be considered to have immune-enhancing activity and might be used as a potential immune-enhancing agent.


Assuntos
Platycodon , Salvia , Animais , Camundongos , NF-kappa B/metabolismo , Platycodon/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Salvia/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/genética , Citocinas/genética , Citocinas/metabolismo , Células RAW 264.7 , Lipopolissacarídeos
2.
J Microbiol Biotechnol ; 34(4): 940-948, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38314445

RESUMO

Codium fragile has been traditionally used in oriental medicine to treat enterobiasis, dropsy, and dysuria, and it has been shown to possess many biological properties. Atopic dermatitis (AD) is one of the types of skin inflammation and barrier disruption, which leads to chronic inflammatory skin diseases. In the current investigation, the protective effects of C. fragile extract (CFE) on anti-inflammation and skin barrier improvement were investigated. In LPS-stimulated RAW 264.7 cells, nitric oxide generation and the expression levels of interleukin (IL)-1ß, IL-4, IL-6, iNOS, COX-2, and tumor necrosis factor-alpha (TNF)-α were reduced by CFE. CFE also inhibited the phosphorylation of NF-κB-p65, ERK, p-38, and JNK. Additionally, CFE showed inhibitory activity on TSLP and IL-4 expression in HaCaT cells stimulated with TNF-α/interferon-gamma (IFN-γ). Enhanced expression of factors related to skin barrier function, FLG, IVL, and LOR, was confirmed. These findings implied that CFE may be used as a therapeutic agent against AD due to its skin barrier-strengthening and anti-inflammatory activities, which are derived from natural marine products.


Assuntos
Anti-Inflamatórios , Citocinas , Dermatite Atópica , Proteínas Filagrinas , Queratinócitos , Macrófagos , Óxido Nítrico , Dermatite Atópica/tratamento farmacológico , Humanos , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Queratinócitos/efeitos dos fármacos , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Citocinas/metabolismo , Óxido Nítrico/metabolismo , Pele/efeitos dos fármacos , Células HaCaT , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Linhagem Celular , NF-kappa B/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética
3.
Fish Shellfish Immunol ; 144: 109266, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043872

RESUMO

Oncorhynchus mykiss, a significant aquaculture species, possesses compounds with numerous biological and pharmacological functions, including antioxidant, anticancer, anti-microbial, and anti-obesity effects. However, possible anti-inflammatory effects of lipids extracted from O. mykiss eggs on RAW264.7 cells induced by LPS have not been elucidated yet. The current study identified 13 fatty acids in lipids extracted from O. mykiss eggs that contained high amounts (51.92% of total fatty acids) of polyunsaturated fatty acids (PUFAs), especially DHA (33.66%) and EPA (7.77%). These O. mykiss lipids (100-400 µg/mL) showed significant anti-inflammatory effects by inhibiting NO and iNOS expression in LPS-stimulated RAW264.7 cells. They also inhibited expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α, while upregulating anti-inflammatory cytokines IL-10, IL-11, and TGF-ß. These lipids from O. mykiss effectively inhibited LPS-induced expression CD86 as a surface biomarker on RAW264.7 cells. Additionally, O. mykiss lipids suppressed phosphorylation of p38, JNK, and ERK1/2 and the expression of phosphorylated NF-κB subunit p65. These findings indicate that O. mykiss lipids possess anti-inflammatory properties by inhibiting NF-κB and MAPK signaling pathways.


Assuntos
Ácidos Graxos , Oncorhynchus mykiss , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Citocinas/genética , Citocinas/metabolismo , Ácidos Graxos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos , NF-kappa B/genética , NF-kappa B/metabolismo , Oncorhynchus mykiss/metabolismo , Células RAW 264.7
4.
J Microbiol Biotechnol ; 34(2): 476-483, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37942550

RESUMO

Fractionated lipids of Halocynthia aurantium (Pyuridae) have been demonstrated to possess anti-inflammatory properties. However, their modulatory properties have not been reported yet. Thus, the objective of this study was to determine immune enhancing effects of fractionated lipids from H. aurantium tunic on macrophage cells. The tunic of H. aurantium was used to isolate total lipids, which were then subsequently separated into neutral lipids, glycolipids, and phospholipids. RAW264.7 cells were stimulated with different concentrations (0.5, 1.0, 2.0, and 4.0%) of each fractionated lipid. Cytotoxicity, production of NO, expression levels of immune-associated genes, and signaling pathways were then determined. Neutral lipids and glycolipids significantly stimulated NO and PGE2 production and expression levels of IL-1ß, IL-6, TNF-α, and COX-2 in a dose-dependent manner, while phospholipids ineffectively induced NO production and mRNA expression. Furthermore, it was found that both neutral lipids and glycolipids increased NF-κB p-65, p38, ERK1/2, and JNK phosphorylation, suggesting that these lipids might enhance immunity by activating NF-κB and MAPK signaling pathways. In addition, H. aurantium lipids-induced TNF-α expression was decreased by blocking MAPK or NF-κB signaling pathways. Phagocytic activity of RAW 264.7 cells was also significantly enhanced by neutral lipids and glycolipids. These results suggest that neutral lipids and glycolipids from H. aurantium tunic have potential as immune-enhancing materials.


Assuntos
NF-kappa B , Urocordados , Animais , Camundongos , NF-kappa B/metabolismo , Glicolipídeos/farmacologia , Glicolipídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosfolipídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Células RAW 264.7
5.
Mar Drugs ; 21(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999383

RESUMO

Crude polysaccharides were extracted from the white jellyfish (Lobonema smithii) using water extraction and fractionated using ion-exchange chromatography to obtain three different fractions (JF1, JF2, and JF3). The chemical characteristics of four polysaccharides were investigated, along with their anti-inflammatory effect in LPS-stimulated RAW264.7 cells. All samples mainly consisted of neutral sugars with minor contents of proteins and sulphates in various proportions. Glucose, galactose, and mannose were the main constituents of the monosaccharides. The molecular weights of the crude polysaccharides and the JF1, JF2, and JF3 fractions were 865.0, 477.6, 524.1, and 293.0 kDa, respectively. All polysaccharides were able to decrease NO production, especially JF3, which showed inhibitory activity. JF3 effectively suppressed iNOS, COX-2, IL-1ß, IL-6, and TNF-α expression, while IL-10 expression was induced. JF3 could inhibit phosphorylated ERK, JNK, p38, and NF-κB p65. Furthermore, flow cytometry showed the impact of JF3 on inhibiting CD11b and CD40 expression. These results suggest that JF3 could inhibit NF-κB and MAPK-related inflammatory pathways. The structural characterisation revealed that (1→3)-linked glucopyranosyl, (1→3,6)-linked galactopyranosyl, and (1→3,6)-linked glucopyranosyl residues comprised the main backbone of JF3. Therefore, L. smithii polysaccharides exhibit good anti-inflammatory activity and could thus be applied as an alternative therapeutic agent against inflammation.


Assuntos
Macrófagos , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/uso terapêutico , Polissacarídeos/química , Inflamação/metabolismo , Células RAW 264.7
6.
PLoS One ; 18(11): e0294675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015971

RESUMO

Polysaccharides isolated from Korean ginseng berries (GBPs) have shown beneficial effects such as immunomodulatory, anti-inflammatory, anti-cancer, and anti-diabetic properties. However, little is known about anti-inflammatory effects of GBPs. Thus, the purpose of this study was to investigate anti-inflammatory properties of four fractions of GBPs, namely GBP-C, GBP-F1, GBP-F2, and GBP-F3, in macrophages. Their toxicities and effects on NO production in RAW264.7 cells were assessed by culturing cells with various concentrations of GBPs and stimulating cells with LPS. Furthermore, expression levels of inflammatory mediators, cytokines, cell surface molecules, and immune signaling pathways were evaluated in LPS-stimulated macrophages using different fractions of GBPs at 450 µg/mL. These GBPs activated LPS-stimulated RAW264.7 cells to significantly reduce NO production. They suppressed the expression of mRNA and cell surface molecules via MAPK and NF-κB pathways. Collectively, results revealed that all four GBP fractions showed anti-inflammatory effects, with GBP-F1 having a more efficient anti-inflammatory effect than GBP-C, GBP-F2, and GBP-F3. The structure of GBP-F1 mainly consists of 1 → 3)- Araf, 1 → 4)- Glcp, and 1 → 6)-Galp glycosidic linkages. These results demonstrate that GBPs can be employed as alternative natural sources of anti-inflammatory agents.


Assuntos
Lipopolissacarídeos , Panax , Animais , Camundongos , Frutas/metabolismo , Panax/metabolismo , Macrófagos/metabolismo , Polissacarídeos/metabolismo , Anti-Inflamatórios/química , Células RAW 264.7 , NF-kappa B/metabolismo
7.
Cells ; 12(8)2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190019

RESUMO

Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.


Assuntos
Neoplasias , Via de Sinalização Wnt , Humanos , Neoplasias/tratamento farmacológico , Carcinogênese , Células-Tronco , Transformação Celular Neoplásica
8.
Nutrients ; 14(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364773

RESUMO

Fatty acids extracted from the Halocynthia aurantium gonad (HAGF) were shown to be primarily composed of the highest concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at 41% and 17% of total fatty acids, respectively. In the present study, HAGF were examined for their immunostimulant and anti-inflammatory effects on RAW264.7 macrophage cells. HAGF were found to significantly boost nitric oxide (NO) production and increase the levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor (TNF)-α expression in a dose-dependent manner. Moreover, the phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK), extracellular signal-regulated kinase (ERK), p38, and nuclear factor κB (NF-κB) p65 was up-regulated by the stimulation of RAW264.7 cells with HAGF. When lipopolysaccharide (LPS)-stimulated the macrophages, they also exhibited anti-inflammatory activity via decreasing NO production and immune-related gene expression, Cluster of differentiation (CD) 86 expression, and protein levels in the NF-κB and mitogen-activated protein kinases (MAPK) signaling pathways. Overall, these results indicate that HAGF exert immune-modulatory effects in macrophages.


Assuntos
Ácidos Graxos , NF-kappa B , NF-kappa B/metabolismo , Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico/metabolismo , Gônadas/metabolismo
9.
PLoS One ; 17(10): e0276020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228005

RESUMO

Strawberry (Fragaria ananassa) is one of the richest sources containing a wide variety of nutritive compounds. Anti-inflammatory activities of fermented rice cake made of strawberry powder as well as rice powder were evaluated. The fermented rice cake containing strawberry powder (SRC) significantly and dose-dependently inhibited NO production in LPS-stimulated RAW264.7 cells without cytotoxicity. Also, SRC effectively suppressed inflammatory gene expression, including iNOS, COX-2, IL-1ß, IL-6, and TNF-α. In addition, the production of PGE2, IL-1ß, IL-6, and TNF-α was significantly reduced. Furthermore, the anti-inflammatory effect of SRC was investigated using carrageenan-induced paw edema of ICR mice. It was demonstrated that pre-orally administration of SRC at a dose of 50 and 100 mg/kg BW significantly inhibited paw edema induced by carrageenan. This study suggested that the anti-inflammation activities of strawberry rice cake give the potential for increasing the commercialization of rice cake and rice products.


Assuntos
Fragaria , Oryza , Animais , Anti-Inflamatórios/uso terapêutico , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Alimentos Fermentados , Fragaria/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Oryza/metabolismo , Pós/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
10.
PLoS One ; 17(8): e0270794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35969529

RESUMO

Halocynthia aurantium is a marine organism that has been considered a promising source for bio-functional materials. Total lipids were extracted from H. aurantium tunic, and then they were separated into neutral lipids, glycolipids, and phospholipids. In the present study, fatty acid profiles of three lipids and their anti-inflammatory effects in RAW264.7 cells were investigated. Among the lipid classes, phospholipids showed the diversity of fatty acid constituents, compared with the glycolipids and neutral lipids. Three lipids contain different contents of fatty acids depending on the kinds of lipids. The most contents were saturated fatty acids (SFAs, 53-69% of the fatty acids) and monounsaturated fatty acids (MUFAs, 15-17% of fatty acids) and polyunsaturated fatty acids (PUFAs, 14-32% of fatty acids) are followed. H. aurantium lipids not only dose-dependently inhibited nitric oxide production but also reduced the expression of inflammatory cytokine genes such as TNF-α, IL-1ß, and IL-6 in LPS-stimulated macrophages. It was also demonstrated that the expression of COX-2 was dose-dependently suppressed. Moreover, H. aurantium lipids decreased phosphorylation of NF-κB p-65, p38, ERK1/2, and JNK, suggesting that three lipids from H. aurantium tunic provide anti-inflammatory effects through NF-κB and MAPK signaling. These results indicate that H. aurantium is a potential source for anti-inflammation.


Assuntos
Anti-Inflamatórios , Macrófagos , Urocordados , Animais , Anti-Inflamatórios/farmacologia , Ácidos Graxos/farmacologia , Glicolipídeos/farmacologia , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfolipídeos/farmacologia , Células RAW 264.7 , Urocordados/química
11.
J Microbiol Biotechnol ; 32(2): 256-262, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949747

RESUMO

Panax ginseng C. A. Meyer is well known as traditional herbal medicine, and ginseng berries are known to exhibit potential immune-enhancing functions. However, little is known about the in vivo immunomodulatory activity of Korean ginseng berries. In this study, crude Korean ginseng berries polysaccharides (GBP) were isolated and their immunomodulatory activities were investigated using cyclophosphamide (CY)-induced immunosuppressive BALB/c mice. In CY-treated mice, oral administration of GBP (50-500 mg/kg BW) remarkably increased their spleen sizes and spleen indices and activated NK cell activities. GBP also resulted in the proliferation of splenic lymphocytes (coordinating with ConA: plant mitogen which is known to stimulate T-cell or LPS: endotoxin which binds receptor complex in B cells to promote the secretion of pro-inflammatory cytokines) in a dose-dependent manner. In addition, GBP significantly stimulated mRNA expression levels of immune-associated genes including interleukin-1ß (IL-1ß), IL-2, IL-4, IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4), and cyclooxygenase-2 (COX-2) in CY-treated mice. These results indicate that GBP is involved in immune effects against CY-induced immunosuppression. Thus, GBP could be developed as an immunomodulation agent for medicinal or functional food application.


Assuntos
Panax , Animais , Ciclofosfamida/efeitos adversos , Frutas , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/farmacologia , Baço
12.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641571

RESUMO

Ammodytes personatus, known as the Pacific sand lance, thrives in cold areas of the North Pacific. In this study, the total lipid was extracted from A. personatus eggs and the fatty acid composition was determined using gas chromatography (GC)-flame ionization detection (FID). The results showed that the extracted lipid contained high content of polyunsaturated fatty acids (PUFAs). The immunomodulatory activities of the A. personatus lipid were investigated using rodent macrophages. First, immune enhancement was analyzed, and the A. personatus lipid significantly and dose-dependently increased the NO production in RAW264.7 cells, and this lipid also regulated the transcription of immune-associated genes in RAW264.7 cells by activating the NF-κB and MAPK pathways. Additionally, flow cytometry revealed that this lipid stimulated phagocytosis. Conversely, the anti-inflammatory activity of the A. personatus lipid was also analyzed and the results showed significantly decreased NO production and gene expression in a dose-dependent manner in LPS-stimulated RAW264.7 cells. In addition, the A. personatus lipid suppressed the LPS-induced phosphorylation of proteins related to the NF-κB and MAPK pathways in LPS-stimulated RAW264.7 cells. Further, flow cytometry demonstrated the lipid-regulated anti-inflammatory activity via inhibition of CD86 expression. The results indicate that A. personatus egg lipid is a potential source of immunomodulation.


Assuntos
Imunomodulação , Lipídeos/farmacologia , Macrófagos/efeitos dos fármacos , Perciformes/metabolismo , Transdução de Sinais , Animais , Ácidos Graxos Insaturados/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fagocitose , Células RAW 264.7
13.
J Microbiol Biotechnol ; 31(7): 942-948, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34099596

RESUMO

Canine influenza virus (CIV) induces acute respiratory disease in dogs. In this study, we aimed to determine the signaling pathways leading to the induction of IFN-ß in a canine respiratory epithelial cell line (KU-CBE) infected with the H3N2 subtype of CIV. Small interfering RNAs (siRNAs) specific to pattern recognition receptors (PRRs) and transcription factors were used to block the IFN-ß induction signals in H3N2 CIV-infected KU-CBE cells. Among the PRRs, only the TLR3 and RIG-I expression levels significantly (p < 0.001) increased in CIV-infected cells. Following transfection with siRNA specific to TLR3 (siTLR3) or RIG-I (siRIG-I), the mRNA expression levels of IFN-ß significantly (p < 0.001) decreased, and the protein expression of IFN-ß also decreased in infected cells. In addition, co-transfection with both siTLR3 and siRIG-I significantly reduced IRF3 (p < 0.001) and IFN-ß (p < 0.001) mRNA levels. Moreover, the protein concentration of IFN-ß was significantly (p < 0.01) lower in cells co-transfected with both siTLR3 and siRIG-I than in cells transfected with either siTLR3 or siRIGI alone. Also, the antiviral protein MX1 was only expressed in KU-CBE cells infected with CIV or treated with IFN-ß or IFN-α. Thus, we speculate that IFN-ß further induces MX1 expression, which might suppress CIV replication. Taken together, these data indicate that TLR3 and RIG-I synergistically induce IFN-ß expression via the activation of IRF3, and the produced IFN-ß further induces the production of MX1, which would suppress CIV replication in CIV-infected cells.


Assuntos
Proteína DEAD-box 58/metabolismo , Células Epiteliais/virologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Interferon beta/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Linhagem Celular , Proteína DEAD-box 58/genética , Cães , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/farmacologia , Proteínas de Resistência a Myxovirus/metabolismo , RNA Interferente Pequeno/farmacologia , Mucosa Respiratória/citologia , Transdução de Sinais , Receptor 3 Toll-Like/genética , Regulação para Cima/genética , Replicação Viral/efeitos dos fármacos
14.
Emerg Microbes Infect ; 9(1): 2714-2726, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33295839

RESUMO

The MERS-CoV isolated during the 2015 nosocomial outbreak in Korea showed distinctive differences in mortality and transmission patterns compared to the prototype MERS-CoV EMC strain belonging to clade A. We established a BAC-based reverse genetics system for a Korean isolate of MERS-CoV KNIH002 in the clade B phylogenetically far from the EMC strain, and generated a recombinant MERS-CoV expressing red fluorescent protein. The virus rescued from the infectious clone and KNIH002 strain displayed growth attenuation compared to the EMC strain. Consecutive passages of the rescued virus rapidly generated various ORF5 variants, highlighting its genetic instability and calling for caution in the use of repeatedly passaged virus in pathogenesis studies and for evaluation of control measures against MERS-CoV. The infectious clone for the KNIH002 in contemporary epidemic clade B would be useful for better understanding of a functional link between molecular evolution and pathophysiology of MERS-CoV by comparative studies with EMC strain.


Assuntos
DNA Complementar/toxicidade , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Clonais , Cricetinae , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Receptores Virais/metabolismo , Células Vero , Proteínas Virais/metabolismo
15.
J Microbiol Biotechnol ; 30(12): 1927-1936, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33046674

RESUMO

Tunicates are known to contain biologically active materials and one species in particular, the sea peach (Halocynthia aurantium), has not been thoroughly studied. In this study we aimed to analyze the fatty acids profile of the H. aurantium body wall and its immunomodulatory effects on RAW264.7 macrophage-like cells. The fatty acids were classified into three categories: saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). Omega-3 fatty acid content, including EPA and DHA, was higher than omega-6 fatty acids. H. aurantium body wall fatty acids exhibited enhanced immune response and anti-inflammatory effects on RAW264.7 macrophage-like cells. Under normal conditions, fatty acids significantly increase nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby improving the immune response. On the other hand, in LPS-treated RAW264.7 cells, fatty acids significantly decreased nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby enhancing anti-inflammatory effects. Fatty acids transcriptionally control the expression of the immune-associated genes, iNOS, IL-1ß, IL-6, COX-2, and TNF-α, via the MAPK and NF-κB signaling cascades in RAW264.7 cells. However, in LPSstimulated RAW264.7 cells, H. aurantium body wall fatty acids significantly inhibited expression of inflammatory cytokine; similarly, production of COX-2 and PGE2 was inhibited. The results of our present study provide insight into the immune-improving and anti-inflammatory effects of H. aurantium body wall fatty acids on macrophages. In addition, our study demonstrates that H. aurantium body wall is a potential source of immune regulatory components.


Assuntos
Ácidos Graxos/imunologia , Ácidos Graxos/farmacologia , Macrófagos/efeitos dos fármacos , Urocordados/química , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Ácidos Graxos/química , Ácidos Graxos Insaturados/metabolismo , Expressão Gênica , Imunomodulação , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
16.
Mar Drugs ; 18(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967264

RESUMO

Total lipids were extracted from sandfish (Arctoscopus japonicus), and then they were separated into the following three lipid fractions: neutral lipids, glycolipids, and phospholipids. In this study, we analyzed the lipid fractions of A. japonicus eggs and we determined their anti-inflammatory activity in RAW264.7 macrophage cells. In these three lipid-fractions, the main fatty acids were as follows: palmitic acid (16:0), oleic acid (18:1n-9), docosahexaenoic acid (DHA, 22:6n-3), and eicosapentaenoic acid (EPA, 20:5n-3). Among the lipid fractions, phospholipids showed the highest concentration of DHA and EPA (21.70 ± 1.92 and 18.96 ± 1.27, respectively). The three lipid fractions of A. japonicus significantly suppressed the production of NO in macrophages. Moreover, they also significantly inhibited the expression of iNOS, COX-2, IL-6, IL-1ß, and TNF-α, in a dose-dependent manner. Furthermore, the lipid fractions of A. japonicus suppressed the nuclear translocation of NF-κB p65 subunits in a dose-dependent manner. In addition, they attenuated the activation of MAPKs (p38, ERK1/2, and JNK) phosphorylation in LPS-stimulated RAW264.7 cells. These results indicate that all the lipid fractions of A. japonicus exert anti-inflammatory activity by suppressing the activation of NF-κB and MAPK pathways. Therefore, the lipid fractions of A. japonicus might be potentially used as anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/farmacologia , Glicolipídeos/farmacologia , Lipídeos/farmacologia , Fosfolipídeos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Peixes , Glicolipídeos/isolamento & purificação , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipídeos/química , Lipídeos/isolamento & purificação , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , NF-kappa B/metabolismo , Óvulo/química , Fosfolipídeos/isolamento & purificação , Células RAW 264.7
17.
PLoS One ; 15(5): e0232757, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32384116

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infection and continues to infect humans, thereby contributing to a high mortality rate (34.3% in 2019). In the absence of an available licensed vaccine and antiviral agent, therapeutic human antibodies have been suggested as candidates for treatment. In this study, human monoclonal antibodies were isolated by sorting B cells from patient's PBMC cells with prefusion stabilized spike (S) probes and a direct immunoglobulin cloning strategy. We identified six receptor-binding domain (RBD)-specific and five S1 (non-RBD)-specific antibodies, among which, only the RBD-specific antibodies showed high neutralizing potency (IC50 0.006-1.787 µg/ml) as well as high affinity to RBD. Notably, passive immunization using a highly potent antibody (KNIH90-F1) at a relatively low dose (2 mg/kg) completely protected transgenic mice expressing human DPP4 against MERS-CoV lethal challenge. These results suggested that human monoclonal antibodies isolated by using the rationally designed prefusion MERS-CoV S probe could be considered potential candidates for the development of therapeutic and/or prophylactic antiviral agents for MERS-CoV human infection.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Dipeptidil Peptidase 4/genética , Humanos , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , República da Coreia , Células Vero
18.
Mar Drugs ; 17(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614594

RESUMO

Arctoscopus japonicus is a cold-water marine fish. The present study investigated the fatty acid composition of A. japonicus egg lipids and their anti-inflammatory effects on LPS-stimulated RAW246.7 macrophages. The results showed that A. japonicus egg lipids contained primarily polyunsaturated fatty acids (52.9% of the total fatty acid content; mostly eicosapentaenoic acid [EPA, 21.2 ± 0.5%] and docosahexaenoic acid [DHA, 25.9 ± 0.1%]), followed by monounsaturated fatty acids and saturated fatty acids (23.7% and 23.4%, respectively). A. japonicus egg lipids significantly decreased nitric oxide (NO) production and suppressed the expression of immune-associated genes such as iNOS, COX-2, IL-1ß, IL-6, and TNF-α LPS-stimulated RAW246.7 macrophages in dose-dependent manner. A. japonicus egg lipids also reduced the phosphorylation levels of NF-κB p-65, p38, ERK1/2, and JNK, key components of the NF-κB and MAPK pathways, suggesting that the lipid-induced anti-inflammatory activity is related to these signaling pathways. These results indicate that the lipids extracted from A. japonicus eggs have potential biofunctions and might be useful for regulating inflammation in macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Peixes/metabolismo , Lipídeos/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Ácidos Graxos Insaturados/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
19.
PLoS One ; 14(2): e0211570, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779763

RESUMO

Immune-regulation and homeostasis are critical in cancer therapy and immunomodulatory biomaterials have been used to decrease side effects of immunosuppressant drugs. Anionic macromolecules (CFAMs) were isolated from the seaweed Codium fragile, and its immune-enhancing biological activities were examined in CY-induced immunosuppressed mice. CFAMs improved the splenic lymphocyte proliferation, NK cell activity, and spleen index. The expression of immune-associated genes was highly upregulated in splenic lymphocytes, and gene expression was differently regulated according to mitogens such as T-cell (Con A) and B-cell (LPS) mitogens. Additionally, CFAMs boosted the proliferation, NO production, and phagocytosis of peritoneal macrophages. CFAMs also considerably stimulated immune-associated gene expression in peritoneal macrophages. Moreover, our results showed CFAMs mediated its immune-enhancing effects via the MAPK pathway. These suggested CFAMs can be used as a potent immunomodulatory material under immune-suppressive condition. Furthermore, CFAMs may also be used as a bio-functional and pharmaceutical material for improving human health and immunity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Clorófitas/química , Substâncias Macromoleculares/farmacologia , Animais , Ânions/isolamento & purificação , Antineoplásicos Alquilantes/farmacologia , Ciclofosfamida/farmacologia , Células Matadoras Naturais , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos Peritoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fagocitose/efeitos dos fármacos , Transdução de Sinais , Baço/imunologia
20.
J Microbiol Biotechnol ; 28(10): 1635-1644, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30441883

RESUMO

Asterias amurensis (starfish) is a marine organism that is harmful to the fishing industry, but is also a potential source of functional materials. The present study was conducted to analyze the profiles of fatty acids extracted from A. amurensis tissues and their anti-inflammatory effects on RAW264.7 macrophage cells. In different tissues, the component ratios of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids differed; particularly, polyunsaturated fatty acids such as dihomo-gamma-linolenic acid (20:3n-6) and eicosapentaenoic acid (20:5n-3) were considerably different. In lipopolysaccharide-stimulated RAW264.7 cells, fatty acids from A. amurensis skin, gonads, and digestive glands exhibited anti-inflammatory activities by reducing nitric oxide production and inducing nitric oxide synthase gene expression. Asterias amurensis fatty acids effectively suppressed the expression of inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and interleukin-6 in lipopolysaccharide-stimulated cells. Cyclooxygenase-2 and prostaglandin E2, which are critical inflammation biomarkers, were also significantly suppressed. Furthermore, A. amurensis fatty acids reduced the phosphorylation of nuclear factor-κB p-65, p38, extracellular signal-related kinase 1/2, and c-Jun N-terminal kinase, indicating that these fatty acids ameliorated inflammation through the nuclear factor-κB and mitogen-activated protein kinase pathways. These results provide insight into the anti-inflammatory mechanism of A. amurensis fatty acids on immune cells and suggest that the species is a potential source of anti-inflammatory molecules.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Graxos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Estrelas-do-Mar/química , Animais , Citocinas/genética , Ácidos Graxos/análise , Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Fosforilação/efeitos dos fármacos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA