RESUMO
BACKGROUND: IL-2 regulates T cell differentiation: low-dose IL-2 induces immunoregulatory Treg differentiation, while high-dose IL-2 acts as a potent activator of cytotoxic T cells and NK cells. Therefore, high-dose IL-2 has been studied for use in cancer immunotherapy. We aimed to utilize low-dose IL-2 to treat inflammatory diseases such as obesity and insulin resistance, which involve low-grade chronic inflammation. MAIN BODY: Systemic administration of low-dose IL-2 increased Treg cells and decreased inflammation in gonadal white adipose tissue (gWAT), leading to improved insulin sensitivity in high-fat diet-fed obese mice. Additionally, central administration of IL-2 significantly enhanced insulin sensitivity through the activation of the sympathetic nervous system. The sympathetic signaling induced by central IL-2 administration not only decreased interferon γ (IFNγ) + Th1 cells and the expression of pro-inflammatory cytokines, including Il-1ß, Il-6, and Il-8, but also increased CD4 + CD25 + FoxP3 + Treg cells and Tgfß expression in the gWAT of obese mice. These phenomena were accompanied by hypothalamic microgliosis and activation of pro-opiomelanocortin neurons. Furthermore, sympathetic denervation in gWAT reversed the enhanced insulin sensitivity and immune cell polarization induced by central IL-2 administration. CONCLUSION: Overall, we demonstrated that IL-2 improves insulin sensitivity through two mechanisms: direct action on CD4 + T cells and via the neuro-immune axis triggered by hypothalamic microgliosis.
Assuntos
Hipotálamo , Resistência à Insulina , Interleucina-2 , Camundongos Endogâmicos C57BL , Obesidade , Sistema Nervoso Simpático , Animais , Camundongos , Resistência à Insulina/fisiologia , Interleucina-2/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Linfócitos T Reguladores/efeitos dos fármacosRESUMO
Multiple pathogenic single-nucleotide polymorphisms (SNPs) have been identified as contributing factors in the aggravation of cancer prognosis and emergence of drug resistance in various cancers. Here, we targeted mutated EGFR and TP53 oncogenes harboring single-nucleotide missense mutations (EGFR-T790M and TP53-R273H) that are associated with gefitinib resistance. Co-delivery of adenine base editor (ABE) and EGFR- and TP53-SNP specific single-guide RNA via adenovirus (Ad) resulted in precise correction of the oncogenic mutations with high accuracy and efficiency in vitro and in vivo. Importantly, compared with a control group treated only with gefitinib, an EGFR inhibitor, co-treatment with Ad/ABE targeting SNPs in TP53 and EGFR in combination with gefitinib increased drug sensitivity and suppressed abnormal tumor growth more efficiently. Taken together, these results indicate that ABE-mediated correction of dual oncogenic SNPs can be an effective strategy for the treatment of drug-resistant cancers.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Gefitinibe , Neoplasias Pulmonares , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Edição de Genes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: In the myeloid compartment of the tumor microenvironment, CD244 signaling has been implicated in immunosuppressive phenotype of monocytes. However, the precise molecular mechanism and contribution of CD244 to tumor immunity in monocytes/macrophages remains elusive due to the co-existing lymphoid cells expressing CD244. METHODS: To directly assess the role of CD244 in tumor-associated macrophages, monocyte-lineage-specific CD244-deficient mice were generated using cre-lox recombination and challenged with B16F10 melanoma. The phenotype and function of tumor-infiltrating macrophages along with antigen-specific CD8 T cells were analyzed by flow cytometry and single cell RNA sequencing data analysis, and the molecular mechanism underlying anti-tumorigenic macrophage differentiation, antigen presentation, phagocytosis was investigated ex vivo. Finally, the clinical feasibility of CD244-negative monocytes as a therapeutic modality in melanoma was confirmed by adoptive transfer experiments. RESULTS: CD244fl/flLysMcre mice demonstrated a significant reduction in tumor volume (61% relative to that of the CD244fl/fl control group) 14 days after tumor implantation. Within tumor mass, CD244fl/flLysMcre mice also showed higher percentages of Ly6Clow macrophages, along with elevated gp100+IFN-γ+ CD8 T cells. Flow cytometry and RNA sequencing data demonstrated that ER stress resulted in increased CD244 expression on monocytes. This, in turn, impeded the generation of anti-tumorigenic Ly6Clow macrophages, phagocytosis and MHC-I antigen presentation by suppressing autophagy pathways. Combining anti-PD-L1 antibody with CD244-/- bone marrow-derived macrophages markedly improved tumor rejection compared to the anti-PD-L1 antibody alone or in combination with wild-type macrophages. Consistent with the murine data, transcriptome analysis of human melanoma tissue single-cell RNA-sequencing dataset revealed close association between CD244 and the inhibition of macrophage maturation and function. Furthermore, the presence of CD244-negative monocytes/macrophages significantly increased patient survival in primary and metastatic tumors. CONCLUSION: Our study highlights the novel role of CD244 on monocytes/macrophages in restraining anti-tumorigenic macrophage generation and tumor antigen-specific T cell response in melanoma. Importantly, our findings suggest that CD244-deficient macrophages could potentially be used as a therapeutic agent in combination with immune checkpoint inhibitors. Furthermore, CD244 expression in monocyte-lineage cells serve as a prognostic marker in cancer patients.
Assuntos
Melanoma , Monócitos , Humanos , Animais , Camundongos , Monócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Macrófagos/metabolismo , Linfócitos T CD8-Positivos , Carcinogênese/metabolismo , Microambiente Tumoral , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismoRESUMO
Species in the genus Trametes (Basidiomycota, Polyporales) have been used in natural medicine for a long time. Many studies reported that mycelia or fruiting bodies of Trametes spp. exhibited effects of antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, comparative analysis in this genus is scarce due to limitation of morphological identification and the sample number. In this study, the 19 strains of seven Trametes species were chosen to generate a five-gene-based phylogeny with the 31 global references. In addition, 39 culture extracts were prepared for 13 strains to test for anticancer and antibacterial activities. Strong anticancer activities were found in several extracts from T. hirsuta and T. suaveolens. Anticancer activities of T. suaveolens, T. cf. junipericola and T. trogii were first described here. The antibacterial ability of T. versicolor and T. hirsuta extracts has been confirmed. The antibacterial activities of T. suaveolens have been reported at the first time in this study. These results suggest an efficient application of the genus Trametes as the drug resources especially for anticancer agents.
RESUMO
Severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause the hyperproduction of inflammatory cytokines, which have pathological effects in patient including severe or fatal cytokine storms. To characterize the effect of SFTSV and SARS-CoV-2 infection on the production of cytokines in severe fever with thrombocytopenia syndrome (SFTS) and COVID-19 patients, we performed an analysis of cytokines in SFTS and COVID-19 patients and also investigated the role of interleukin-10 (IL-10) in vitro studies: lipopolysaccharide-induced THP-1-derived macrophages, SFTSV infection of THP-1 cells, and SARS-CoV-2 infection of THP-1 cells. In this study, we found that levels of both IL-10 and IL-6 were significantly elevated, the level of transforming growth factor-ß (TGF-ß) was significantly decreased and IL-10 was elevated earlier than IL-6 in severe and critical COVID-19 and fatal SFTS patients, and inhibition of IL-10 signaling decreased the production of IL-6 and elevated that of TGF-ß. Therefore, the hyperproduction of IL-10 and IL-6 and the low production of TGF-ß have been linked to cytokine storm-induced mortality in fatal SFTS and severe and critically ill COVID-19 patients and that IL-10 can play an important role in the host immune response to severe and critical SARS-CoV-2 and fatal SFTSV infection.
Assuntos
COVID-19 , Febre Grave com Síndrome de Trombocitopenia , Humanos , Síndrome da Liberação de Citocina , Citocinas , Interleucina-10 , Interleucina-6 , SARS-CoV-2 , Fator de Crescimento Transformador betaRESUMO
BACKGROUND: Recently, bacterial extracellular vesicles (EVs) have been considered to play crucial roles in various biological processes and have great potential for developing cancer therapeutics and biomedicine. However, studies on bacterial EVs have mainly focused on outer membrane vesicles released from gram-negative bacteria since the outermost peptidoglycan layer in gram-positive bacteria is thought to preclude the release of EVs as a physical barrier. RESULTS: Here, we examined the ultrastructural organization of the EV produced by gram-positive bacteria using super-resolution stochastic optical reconstruction microscopy (STORM) at the nanoscale, which has not been resolved using conventional microscopy. Based on the super-resolution images of EVs, we propose three major mechanisms of EV biogenesis, i.e., membrane blebbing (mechanisms 1 and 2) or explosive cell lysis (mechanism 3), which are different from the mechanisms in gram-negative bacteria, despite some similarities. CONCLUSIONS: These findings highlight the significant role of cell wall degradation in regulating various mechanisms of EV biogenesis and call for a reassessment of previously unresolved EV biogenesis in gram-positive bacteria.
Assuntos
Fenômenos Biológicos , Vesículas Extracelulares , Microscopia , Bactérias Gram-Positivas , Morte CelularRESUMO
To overcome the hurdles of immunotherapy, we investigated whether calcipotriol, a synthetic vitamin D analog, could overcome the immune evasion of glioblastoma multiforme (GBM) by modulating immune responses and the immunosuppressive tumor microenvironment. Administration of calcipotriol considerably reduced tumor growth. Both in vivo and in vitro studies revealed that CD8+T and natural killer (NK) cell gene signatures were enriched and activated, producing high levels of IFN-γ and granzyme B. In contrast, regulatory T cells (Treg) were significantly reduced in the calcipotriol-treated group. The expression of CD127, the receptor for thymic stromal lymphopoietin (TSLP), is elevated in CD4+T cells and potentially supports T-cell priming. Depleting CD4+T cells, but not NK or CD8+T cells, completely abrogated the antitumor efficacy of calcipotriol. These data highlight that the calcipotriol/TSLP/CD4+T axis can activate CD8+T and NK cells with a concomitant reduction in the number of Tregs in GBM. Therefore, calcipotriol can be a novel therapeutic modality to overcome the immune resistance of GBM by converting immunologically "cold" tumors into "hot" tumors. DATA AVAILABILITY: Data are available upon reasonable request. The RNA-seq dataset comparing the transcriptomes of control and calcipotriol-treated GL261 tumors is available from the corresponding author upon request.
Assuntos
Glioblastoma , Vitamina D , Linfócitos T CD8-Positivos , Calcitriol/análogos & derivados , Glioblastoma/metabolismo , Humanos , Células Matadoras Naturais , Ativação Linfocitária , Microambiente Tumoral , Vitamina D/metabolismoRESUMO
Tremendous advances have been made toward accurate recapitulation of the human intestinal system in vitro to understand its developmental process, and disease progression. However, current in vitro models are often confined to 2D or 2.5D microarchitectures, which is difficult to mimic the systemic level of complexity of the native tissue. To overcome this problem, physiologically relevant intestinal models are developed with a 3D hollow tubular structure using 3D bioprinting strategy. A tissue-specific biomaterial, colon-derived decellularized extracellular matrix (Colon dECM) is developed and it provides significant maturation-guiding potential to human intestinal cells. To fabricate a perfusable tubular model, a simultaneous printing process of multiple materials through concentrically assembled nozzles is developed and a light-activated Colon dECM bioink is employed by supplementing with ruthenium/sodium persulfate as a photoinitiator. The bioprinted intestinal tissue models show spontaneous 3D morphogenesis of the human intestinal epithelium without any external stimuli. In consequence, the printed cells form multicellular aggregates and cysts and then differentiate into several types of enterocytes, building junctional networks. This system can serve as a platform to evaluate the effects of potential drug-induced toxicity on the human intestinal tissue and create a coculture model with commensal microbes and immune cells for future therapeutics.
Assuntos
Bioimpressão , Engenharia Tecidual , Colo , Matriz Extracelular/química , Humanos , Intestinos , Impressão Tridimensional , Alicerces Teciduais/químicaRESUMO
Previous studies demonstrated an association between cervical strain and risk of spontaneous preterm delivery (sPTD). The present study aimed to assess the efficacy of elastography in predicting sPTD at <32 weeks of gestation in women with singleton pregnancies receiving progesterone for short cervix (≤2.5 cm) diagnosed between 16 and 28 weeks of gestation Among 115 participants eligible for analysis, nine had sPTD at <32 weeks. Preprogesterone (PP0) mean internal os strain (IOS), elasticity contrast index (ECI), hardness ratio (HR), one-week postprogesterone (PP1) IOS, mean external os strain (EOS), ECI, and HR were significantly different between groups. Higher PP0 IOS, PP1 IOS, and PP1 EOS were associated with a 2.92, 4.39 and 3.65-fold increase in the risk of sPTD at <32 weeks, respectively (adjusted for cervical length (CL) at diagnosis; p = 0.04, 0.012 and 0.026, respectively). A combination of CL at diagnosis, PP0 IOS and PP1 EOS showed a significantly higher area under the receiver operating characteristic curve (0.858) than that of CL alone (p = 0.041). In women with singleton pregnancies receiving progesterone for short cervix, cervical elastography performed before and one week after progesterone treatment may be useful in predicting sPTD at <32 weeks of gestation.
Assuntos
Técnicas de Imagem por Elasticidade , Nascimento Prematuro , Colo do Útero/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Humanos , Recém-Nascido , Gravidez , Nascimento Prematuro/epidemiologia , ProgesteronaRESUMO
Stress granules are membraneless organelles composed of numerous components including ribonucleoproteins. The stress granules are characterized by a dynamic complex assembly in response to various environmental stressors, which has been implicated in the coordinated regulation of diverse biological pathways, to exert a protective role against stress-induced cell death. Here, we show that stress granule formation is induced by morusin, a novel phytochemical displaying antitumor capacity through barely known mechanisms. Morusin-mediated induction of stress granules requires activation of protein kinase R (PKR) and subsequent eIF2α phosphorylation. Notably, genetic inactivation of stress granule formation mediated by G3BP1 knockout sensitized cancer cells to morusin treatment. This protective function against morusin-mediated cell death can be attributed at least in part to the sequestration of receptors for activated C kinase-1 (RACK1) within the stress granules, which reduces caspase-3 activation. Collectively, our study provides biochemical evidence for the role of stress granules in suppressing the antitumor capacity of morusin, proposing that morusin treatment, together with pharmacological inhibition of stress granules, could be an efficient strategy for targeting cancer.
Assuntos
Apoptose/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Flavonoides/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Receptores de Quinase C Ativada/metabolismo , eIF-2 Quinase/metabolismo , Grânulos Citoplasmáticos/patologia , Células HCT116 , Células HeLa , Humanos , Células PC-3RESUMO
Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches.
Assuntos
Colo/citologia , Células Epiteliais/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Desmossomos/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Membranas Artificiais , Microvilosidades/fisiologia , Mucinas/metabolismo , Nanoporos , Células-Tronco/citologia , Células-Tronco/metabolismo , Junções Íntimas/metabolismoRESUMO
Solution-based direct patterning on an elastomer substrate with meniscus-dragging deposition (MDD) enables fabrication of very thin carbon nanotube (CNT) layers in the nanometer scale (80-330 nm). To fabricate the CNT pattern with CNT solution, contact angle, electrical variation, mechanical stress, and surface cracks of elastomer substrate were analyzed to identify the optimal conditions of O2 treatment (treatment for 30 s with RF power of 50 W in O2 atmosphere of 50 sccm) and mixture ratio between Ecoflex and polydimethylsiloxane (PDMS) (Ecoflex:PDMS = 5:1). The type of mask for patterning of the CNT layer was determined through quantitative analysis for sharpness and uniformity of the fabricated CNT pattern. Through these optimization processes, the CNT pattern was produced on the elastomer substrate with selected mask (30 µm thick oriented polypropylene). The thickness of CNT pattern was also controlled to have hundreds nanometer and 500 µm wide rectangular and circular shapes were demonstrated. Furthermore, the change in the current and resistance of the CNT layer according to the applied strain on the elastomer substrate was analyzed. Our results demonstrated the potential of the MDD method for direct CNT patterning with high uniformity and the possibility to fabricate a stretchable sensor.
RESUMO
Covalent conjugations of the SUMO-1 moiety on a target protein play important roles in the regulation of cellular protein function. SUMO-conjugation of PML is a regulatory step for PML nuclear body (PML-NB) formation, and HIPK2 is SUMO-conjugated and recruited into the PML-NBs. Although HIPK2 mutations (R861W and N951I) were found in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients, little is known about the underlying mechanisms by which HIPK2 mutations are associated with the pathogenesis of leukemia. Here we show that HIPK2 mutants found in AML and MDS patients are defective in SUMO-interacting motif (SIM) function. Due to defective SIM function, the HIPK2 mutants were not modified with SUMO-1, and not recruited to the PML-NBs. However, the HIPK2 mutants can normally bind to and phosphorylate AML1b. Therefore, the HIPK2 mutants can sequestrate the AML1 complex out of the PML-NBs, resulting in the disruption of AML1-mediated activation of target genes for myeloid differentiation. In addition, the differentiation of K562 blast cells was impaired by the expression of the HIPK2 SIM-defective mutants. These results suggest that HIPK2 targeting into the PML-NBs via the SIMs is crucial for HIPK2-mediated induction of myeloid differentiation, and is associated with AML pathogenesis.
RESUMO
OBJECTIVE: In this study, we evaluated the prevalence of allergic disease in offsprings delivered via the delivery modes of vaginal delivery vs. planned Cesarean section vs. Cesarean section with labor. METHODS: This study included 175 mother-neonate pairs from Severance Hospital who were enrolled in the Cohort for Childhood Origin of Asthma and allergic diseases study. Information regarding prenatal environmental factors, delivery, and diagnosis of allergic diseases was obtained from a questionnaire and medical record review. Patients with at least 3 years of follow-up data were included in this study. Results were adjusted for sex, birth weight, gestational age at birth, season of birth, neonatal intensive care unit admission, parity, breastfeeding, and maternal factors. RESULTS: A total of 175 offsprings were eligible for analysis. Among the subjects, 52.0% were delivered by vaginal delivery, 34.3% by planned Cesarean section, and 16.6% by Cesarean section with labor. Fifty-nine offsprings (33.7%) were diagnosed with allergic disease at a median age of 1 year (range 0.5-3 years). The prevalence of allergic disease was not associated with delivery mode after adjusting for confounding variables. Time period from membrane rupture to delivery, duration of the active phase, and the beginning of the pelvic division prior to Cesarean section were not associated with allergic disease development in offsprings. CONCLUSION: Cesarean section, irrespective of the occurrence of labor before surgery, did not increase the prevalence of allergic disease in infants up to 3 years of age.
RESUMO
Neuroblastoma is the most common pediatric extracranial solid tumor derived from primitive neural crest cells of the sympathetic nervous system. Although one-fifths of all neuroblastomas occurs within the thorax, thoracic neuroblastomas detected in fetus have been rarely reported. We report a case of fetal thoracic neuroblastoma with massive pleural effusion detected with prenatal ultrasonography. A 34-year-old Korean second-gravida was referred to our hospital at 30 weeks of gestation for evaluation, after the right lung mass found in the fetus. Approximately 3 cm, well-defined, hyperechoic mass was found in the right thorax with right pleural effusion, with the initial suspicion of teratoma. However, as mass continued to grow with deteriorating pleural effusion and fetal hydrops, the mass was considered malignant after 3 weeks. After a cesarean delivery, an approximately 4 cm mass with peripheral calcification and hemothorax was found on neonatal ultrasonography. Neuroblastoma was diagnosed on excision biopsy.