Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085571

RESUMO

BACKGROUND: Reactive astrogliosis is a hallmark of various brain pathologies, including neurodegenerative diseases and glioblastomas. However, the specific intermediate metabolites contributing to reactive astrogliosis remain unknown. This study investigated how glioblastomas induce reactive astrogliosis in the neighboring microenvironment and explores 11C-acetate PET as an imaging technique for detecting reactive astrogliosis. METHODS: Through in vitro, mouse models, and human tissue experiments, we examined the association between elevated 11C-acetate uptake and reactive astrogliosis in gliomas. We explored acetate from glioblastoma cells, which triggers reactive astrogliosis in neighboring astrocytes by upregulating MAO-B and MCT1 expression. We evaluated the presence of cancer stem cells in the reactive astrogliosis region of glioblastomas and assessed the correlation between the volume of 11C-acetate uptake beyond MRI and prognosis. RESULTS: Elevated 11C-acetate uptake is associated with reactive astrogliosis and astrocytic MCT1 in the periphery of glioblastomas in human tissues and mouse models. Glioblastoma cells exhibit increased acetate production as a result of glucose metabolism, with subsequent secretion of acetate. Acetate derived from glioblastoma cells induces reactive astrogliosis in neighboring astrocytes by increasing the expression of MAO-B and MCT1. We found cancer stem cells within the reactive astrogliosis at the tumor periphery. Consequently, a larger volume of 11C-acetate uptake beyond contrast-enhanced MRI was associated with worse prognosis. CONCLUSION: Our results highlight the role of acetate derived from glioblastoma cells in inducing reactive astrogliosis and underscore the potential value of 11C-acetate PET as an imaging technique for detecting reactive astrogliosis, offering important implications for the diagnosis and treatment of glioblastomas.

2.
Brain ; 146(7): 2957-2974, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37062541

RESUMO

Reactive astrogliosis is a hallmark of Alzheimer's disease (AD). However, a clinically validated neuroimaging probe to visualize the reactive astrogliosis is yet to be discovered. Here, we show that PET imaging with 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG) functionally visualizes the reactive astrocyte-mediated neuronal hypometabolism in the brains with neuroinflammation and AD. To investigate the alterations of acetate and glucose metabolism in the diseased brains and their impact on the AD pathology, we adopted multifaceted approaches including microPET imaging, autoradiography, immunohistochemistry, metabolomics, and electrophysiology. Two AD rodent models, APP/PS1 and 5xFAD transgenic mice, one adenovirus-induced rat model of reactive astrogliosis, and post-mortem human brain tissues were used in this study. We further curated a proof-of-concept human study that included 11C-acetate and 18F-FDG PET imaging analyses along with neuropsychological assessments from 11 AD patients and 10 healthy control subjects. We demonstrate that reactive astrocytes excessively absorb acetate through elevated monocarboxylate transporter-1 (MCT1) in rodent models of both reactive astrogliosis and AD. The elevated acetate uptake is associated with reactive astrogliosis and boosts the aberrant astrocytic GABA synthesis when amyloid-ß is present. The excessive astrocytic GABA subsequently suppresses neuronal activity, which could lead to glucose uptake through decreased glucose transporter-3 in the diseased brains. We further demonstrate that 11C-acetate uptake was significantly increased in the entorhinal cortex, hippocampus and temporo-parietal neocortex of the AD patients compared to the healthy controls, while 18F-FDG uptake was significantly reduced in the same regions. Additionally, we discover a strong correlation between the patients' cognitive function and the PET signals of both 11C-acetate and 18F-FDG. We demonstrate the potential value of PET imaging with 11C-acetate and 18F-FDG by visualizing reactive astrogliosis and the associated neuronal glucose hypometablosim for AD patients. Our findings further suggest that the acetate-boosted reactive astrocyte-neuron interaction could contribute to the cognitive decline in AD.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Ratos , Animais , Doença de Alzheimer/metabolismo , Fluordesoxiglucose F18/metabolismo , Astrócitos/metabolismo , Radioisótopos de Carbono/metabolismo , Gliose/diagnóstico por imagem , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Ácido gama-Aminobutírico/metabolismo
3.
Clin Nucl Med ; 47(10): 863-868, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868002

RESUMO

PURPOSE: 11 C-acetate ( 11 C-ACE) uptake on PET/CT was recently discovered to represent reactive astrocytes in the tumor microenvironment. This study aimed at evaluating the role of 11 C-ACE PET/CT as an imaging biomarker of reactive astrogliosis in characterizing different types of gliomas. METHODS: In this prospective study, a total of 182 patients underwent 11 C-ACE PET/CT before surgery. The ratio of SUV max of a glioma to the SUV mean of the contralateral choroid plexus ( 11 C-ACE TCR) on PET/CT was calculated. 11 C-ACE TCRs were compared with the World Health Organization grades and isocitrate dehydrogenase 1 ( IDH1 ) mutation status. Grade 2 was considered low-grade tumor, and grades 3 and 4 were considered high-grade tumors. RESULTS: The median 11 C-ACE TCR was significantly higher in IDH1 wild-type (wt) tumors (n = 91) than in IDH1 -mutant (mt) tumors (n = 91) (2.38 vs 1.30, P < 0.001). Of the 91 IDH1 -mt tumors, there were no differences in the median 11 C-ACE TCRs between oligodendrogliomas (ODs) and astrocytic tumors (1.40 vs 1.20, P > 0.05). In grading low- versus high-grade gliomas, the receiver operating characteristic curve analyses showed a higher area under the curve (0.951) in IDH1 -wt tumors than in IDH1 -mt tumors (0.783, P = 0.002). Grade 2 ODs were well differentiated from high-grade gliomas. The 11 C-ACE TCR of grade 3 ODs was significantly lower than that of IDH1 -wt glioblastomas. CONCLUSIONS: High 11 C-ACE uptake is associated with high-grade IDH1 -wt tumors, thus facilitating differentiation from high-grade IDH1-mt and low-grade gliomas. In particular, low 11 C-ACE uptake in ODs is advantageous in overcoming the limitation of radiolabeled amino acid tracers.


Assuntos
Neoplasias Encefálicas , Glioma , Acetatos , Neoplasias Encefálicas/metabolismo , Glioma/patologia , Gliose , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Microambiente Tumoral
4.
Exp Neurobiol ; 26(6): 350-361, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29302202

RESUMO

Adeno-associated virus (AAV)-mediated gene delivery has been proposed to be an essential tool of gene therapy for various brain diseases. Among several cell types in the brain, astrocyte has become a promising therapeutic target for brain diseases, as more and more contribution of astrocytes in pathophysiology has been revealed. Until now, genetically targeting astrocytes has been possible by utilizing the glial fibrillary acidic protein (GFAP) promoter. In some brain areas including thalamus, however, the GFAP expression in astrocytes is reported to be low, making it difficult to genetically target astrocytes using GFAP promoter. To study the function of astrocytes in thalamus, which serves as a relay station, there is a great need for identifying an alternative astrocyte-specific promoter in thalamus. Recently, a new astrocyte-specific promoter of ALDH1L1 has been identified. However, it has not been examined in thalamus. Here we developed and characterized an AAV vector expressing Cre recombinase under the human ALDH1L1 promoter, AAV-hALDH1L1-Cre. To test the cell-type specific expression of AAV-hALDH1L1-Cre, AAV virus was injected into several brain regions of Ai14 (RCL-tdTomato) mouse, which reports Cre activity by tdTomato expression. In thalamus, we observed that tdTomato was found mostly in astrocytes (91.71%), with minimal occurrence in neurons (2.67%). In contrast, tdTomato signal was observed in both neurons and astrocytes of the amygdala (neuron: 68.13%, astrocyte: 28.35%) and hippocampus (neuron: 76.25%, astrocyte: 18.00%), which is consistent with the previous report showing neuronal gene expression under rat ALDH1L1 promoter. Unexpectedly, tdTomato was found mostly in neurons (91.98%) with minimal occurrence in astrocytes (6.66%) of the medial prefrontal cortex. In conclusion, hALDH1L1 promoter shows astrocyte-specificity in thalamus and may prove to be useful for targeting thalamic astrocytes in mouse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA