Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Environ Toxicol ; 33(10): 1005-1018, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29484840

RESUMO

Inflammation generated by environmental toxicants including pesticides could be one of the factors underlying neuronal cell damage in neurodegenerative diseases. In this study, we investigated the mechanisms by which inflammatory responses contribute to apoptosis in PC12 cells treated with diquat. We found that diquat induced apoptosis, as demonstrated by the activation of caspases and nuclear condensation, inhibition of mitochondrial complex I activity, and decreased ATP level in PC12 cells. Diquat also reduced the dopamine level, indicating that cell death induced by diquat is due to cytotoxicity of dopaminergic neuronal components in these cells. Exposure of PC12 cells to diquat led to the production of reactive oxygen species (ROS), and the antioxidant N-acetyl-cystein attenuated the cytotoxicity of caspase-3 pathways. These results demonstrate that diquat-induced apoptosis is involved in mitochondrial dysfunction through production of ROS. Furthermore, diquat increased expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) via inflammatory stimulation. Diquat induced nuclear accumulation of NF-κB and p53 proteins. Importantly, an inhibitor of NF-κB nuclear translocation blocked the increase of p53. Both NF-κB and p53 inhibitors also blocked the diquat-induced inflammatory response. Pretreatment of cells with meloxicam, a COX-2 inhibitor, also blocked apoptosis and mitochondrial dysfunction. These results represent a unique molecular characterization of diquat-induced cytotoxicity in PC12 cells. Our results demonstrate that diquat induces cell damage in part through inflammatory responses via NF-κB-mediated p53 signaling. This suggests the potential to generate mitochondrial damage via inflammatory responses and inflammatory stimulation-related neurodegenerative disease.


Assuntos
Diquat/toxicidade , Herbicidas/toxicidade , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose , Caspase 3/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inflamação/metabolismo , Meloxicam , Mitocôndrias/fisiologia , Estresse Oxidativo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tiazinas/farmacologia , Tiazóis/farmacologia
2.
Toxicol Lett ; 284: 120-128, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29241732

RESUMO

Mitochondrial dynamics and mitophagy are critical processes for regulating mitochondrial homeostasis. Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein that plays crucial roles in apoptosis and necroptosis, but the roles of PGAM5 in mitochondrial dynamics and mitophagy remain unclear. In this study, we investigated the role of PGAM5 in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced mitochondrial damage and the correlation between mitochondrial dynamics and mitophagy using SH-SY5Y cells. We found that CCCP decreased mitochondrial membrane potential, resulting in mitochondrial dysfunction. CCCP increased PGAM5, dynamin-related protein 1 (DRP1), and optic atrophy 1 (OPA1) expression of the mitochondrial fraction in a time-dependent manner. Knockdown of PGAM5 inhibited DRP1 translocation without a change in OPA1 expression in CCCP-treated cells. Furthermore, knockdown of PGAM5 and DRP1 significantly blocked the increase of PTEN-induced putative protein kinase 1 (PINK1) and Parkin expression in the mitochondrial fraction of CCCP-treated cells. Interestingly, CCCP did not alter PINK1/Parkin expression in the mitochondrial fraction of OPA1 knockdown cells. Inhibiting mitophagy by PGAM5 knockdown accelerated CCCP-induced apoptosis. CCCP treatment also results in PINK1 stabilization on the mitochondrial membrane, which subsequently increases Parkin recruitment from the cytosol to abnormal mitochondria. In addition, we found that CCCP increased the level of mitochondrial LC3II, indicating that Parkin recruitment of PINK1 is a result of mitophagy. We propose that activation of PGAM5 is associated with DRP1 recruitment and PINK1 stabilization, which contribute to the modulation of mitophagy in CCCP-treated cells with mitochondrial dysfunction. In conclusion, we demonstrated that PGAM5 regulates PINK1-Parkin-mediated mitophagy, which can exert a neuroprotective effect against CCCP-induced apoptosis.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dinaminas , GTP Fosfo-Hidrolases/genética , Técnicas de Silenciamento de Genes , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Fosfoproteínas Fosfatases/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
3.
Tumour Biol ; 39(10): 1010428317733985, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29034772

RESUMO

Damage to mitochondria induces mitophagy, a cellular process that is gaining interest for its therapeutic relevance to a variety of human diseases. However, the mechanism underlying mitochondrial depolarization and clearance in mitophagy remains poorly understood. We previously reported that mitochondria-induced cell death was caused by knockdown of Neisseria gonorrhoeae opacity-associated-interacting protein 5 in gastric cancer. In this study, we show that Neisseria gonorrhoeae opacity-associated-interacting protein 5 loss and gain of function modulates mitophagy induced by treatment with docetaxel, a chemotherapy drug for gastric cancer. The activation of mitophagy by Neisseria gonorrhoeae opacity-associated-interacting protein 5 overexpression promoted cell survival, preventing docetaxel-induced mitochondrial clearance. Conversely, short interfering RNA-mediated knockdown of Neisseria gonorrhoeae opacity-associated-interacting protein 5 accelerated docetaxel-induced apoptosis while increasing mitochondrial depolarization, reactive oxygen species, and endoplasmic reticulum stress and decreasing adenosine triphosphate production. We also found that the mitochondrial outer membrane proteins mitofusin 2 and phosphatase and tensin homolog-induced putative kinase 1 colocalized with Neisseria gonorrhoeae opacity-associated-interacting protein 5 in mitochondria and that mitofusin 2 knockdown altered Neisseria gonorrhoeae opacity-associated-interacting protein 5 expression. These findings indicate that Neisseria gonorrhoeae opacity-associated-interacting protein 5 modulates docetaxel-induced mitophagic cell death and therefore suggest that this protein comprises a potential therapeutic target for gastric cancer treatment.


Assuntos
Morte Celular/efeitos dos fármacos , Proteínas Cromossômicas não Histona/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Neoplasias Gástricas/metabolismo , Taxoides/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Docetaxel , GTP Fosfo-Hidrolases/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Neisseria gonorrhoeae/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tensinas/metabolismo
5.
Cell Death Dis ; 8(3): e2682, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300829

RESUMO

Cystatin SN (CST1) is a specific inhibitor belonging to the cystatin superfamily that controls the proteolytic activities of cysteine proteases such as cathepsins. Our previous study showed that high CST1 expression enhances tumor metastasis and invasiveness in colorectal cancer. Recently, auranofin (AF), a gold(I)-containing thioredoxin reductase 1 (TrxR1) inhibitor, has been used clinically to treat rheumatoid arthritis. AF is a proteasome-associated deubiquitinase inhibitor and can act as an anti-tumor agent. In this study, we investigated whether CST1 expression induces autophagy and tumor cell survival. We also investigated the therapeutic effects of AF as an anti-tumor agent in colorectal cancer (CRC) cells. We found that CRC cells expressing high levels of CST1 undergo increased autophagy and exhibit chemotherapeutic resistance to AF-induced cell death, while those expressing low levels of CST1 are sensitive to AF. We also observed that knockdown of CST1 in high-CST1 CRC cells using CST1-specific small interfering RNAs attenuated autophagic activation and restored AF-induced cell mortality. Conversely, the overexpression of CST1 increased autophagy and viability in cells expressing low levels of CST1. Interestingly, high expression of CST1 attenuates AF-induced cell death by inhibiting intracellular reactive oxygen species (ROS) generation, as demonstrated by the fact that the blockage of ROS production reversed AF-induced cell death in CRC cells. In addition, upregulation of CST1 expression increased cellular glutathione reductase (GR) activity, reducing the cellular redox state and inducing autophagy in AF-treated CRC cells. These results suggest that high CST1 expression may be involved in autophagic induction and protects from AF-induced cell death by inhibition of ROS generation through the regulation of GR activity.


Assuntos
Auranofina/farmacologia , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Glutationa Redutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cistatinas Salivares/farmacologia , Catepsinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Oxirredução/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Cistatinas Salivares/metabolismo , Tiorredoxina Redutase 1/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Mol Neurobiol ; 54(3): 1844-1857, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26892626

RESUMO

Mitochondrial quality control and clearance of damaged mitochondria through mitophagy are important cellular activities. Studies have shown that PTEN-induced putative protein kinase 1 (PINK1) and Parkin play central roles in triggering mitophagy; however, little is known regarding the mechanism by which PINK1 modulates mitophagy in response to reactive oxygen species (ROS)-induced stress. In this study, chlorpyrifos (CPF)-induced ROS caused mitochondrial damage and subsequent engulfing of mitochondria in double-membrane autophagic vesicles, indicating that clearance of damaged mitochondria is due to mitophagy. CPF treatment resulted in PINK1 stabilization on the outer mitochondrial membrane and subsequently increased Parkin recruitment from the cytosol to the abnormal mitochondria. We found that PINK1 physically interacts with Parkin in the mitochondria of CPF-treated cells. Furthermore, a knockdown of PINK1 strongly inhibited the LC3-II protein level by blocking Parkin recruitment. This indicates that CPF-induced mitophagy is due to PINK1 stabilization in mitochondria. We observed that PINK1 stabilization was selectively regulated by ROS-mediated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling activation but not p38 signaling. In the mitochondria of CPF-exposed cells, pretreatment with specific inhibitors of JNK and ERK1/2 significantly decreased PINK1 stabilization and Parkin recruitment and blocked the LC3-II protein level. Specifically, JNK and ERK1/2 inhibition also dramatically blocked the interaction between PINK1 and Parkin. Our results demonstrated that PINK1 regulation plays a critical role in CPF-induced mitophagy. The simple interpretation of these results is that JNK and ERK1/2 signaling regulates PINK1/Parkin-dependent mitophagy in the mitochondria of CPF-treated cells. Overall, this study proposes a novel molecular regulatory mechanism of PINK1 stabilization under CPF exposure.


Assuntos
Clorpirifos/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Proteínas Quinases/metabolismo , Linhagem Celular Tumoral , Inibidores da Colinesterase/toxicidade , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neuroblastoma/patologia , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Environ Toxicol ; 32(1): 109-121, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26588882

RESUMO

The autophagy pathway can be induced and upregulated in response to intracellular reactive oxygen species (ROS). In this study, we explored a novel pharmacotherapeutic approach involving the regulation of autophagy to prevent deltamethrin (DLM) neurotoxicity. We found that DLM-induced apoptosis in PC12 cells, as demonstrated by the activation of caspase-3 and -9 and by nuclear condensation. DLM treatment significantly decreased dopamine (DA) levels in PC12 cells. In addition, we observed that cells treated with DLM underwent autophagic cell death, by monitoring the expression of LC3-II, p62, and Beclin-1. Exposure of PC12 cells to DLM led to the production of ROS. Treatment with N-acetyl cysteine (NAC) effectively blocked both apoptosis and autophagy. In addition, mitogen-activated protein kinase (MAPK) inhibitors attenuated apoptosis as well as autophagic cell death. We also investigated the modulation of DLM-induced apoptosis in response to autophagy regulation. Pretreatment with the autophagy inducer, rapamycin, significantly enhanced the viability of DLM-exposed cells, and this enhancement of cell viability was partially due to alleviation of DLM-induced apoptosis via a decrease in levels of cleaved caspase-3. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), significantly increased DLM toxicity in these cells. Our results suggest that DLM-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against DLM-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 109-121, 2017.


Assuntos
Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Inseticidas/toxicidade , Nitrilas/antagonistas & inibidores , Nitrilas/toxicidade , Piretrinas/antagonistas & inibidores , Piretrinas/toxicidade , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular , Dopamina/metabolismo , Humanos , Células PC12 , Ratos , Espécies Reativas de Oxigênio
8.
Toxicol Lett ; 260: 8-17, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27553674

RESUMO

Central events in the mitochondrial-dependent cell death pathway include the disruption of mitochondrial membrane potential, which causes the release of apoptogenic molecules leading to cell death. Based on the cytotoxic mechanism of deltamethrin (DLM), we examined the neuroprotective mechanisms of rosiglitazone (RGZ), which is against DLM-induced neuronal cell death. In this study, we found that DLM induces apoptosis in SH-SY5Y cells as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, neuronal cell death in response to DLM was due to mitochondrial dependent-apoptosis pathways since DLM increased cytochrome c release into the cytosol and activated caspase-9. DLM exposure reduced PINK1 expression, and pretreatment with RGZ significantly reduced cytochrome c release and caspase-9 activation. RGZ also attenuated the reduction of complex I activity, mitochondrial membrane potential, and ATP levels. Pretreatment with RGZ significantly enhanced PINK1 expression in DLM-exposed cells. In addition, RGZ increased cytosolic PINK1 by inhibiting mitochondrial translocation of PINK1. Interestingly, RGZ fails to rescue DLM-induced mitochondrial dysfunction both in PINK1 knockdown and PPAR-γ antagonist treated cells. Results from this study suggest that RGZ exerts anti-apoptotic effects against DLM-induced cytotoxicity by attenuation of mitochondrial dysfunction through cytosolic PINK1-dependent signaling pathways.


Assuntos
Apoptose/efeitos dos fármacos , Inseticidas/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrilas/antagonistas & inibidores , PPAR gama/agonistas , Proteínas Quinases/metabolismo , Piretrinas/antagonistas & inibidores , Anilidas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Forma do Núcleo Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Inseticidas/agonistas , Inseticidas/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Nitrilas/agonistas , Nitrilas/toxicidade , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Transporte Proteico/efeitos dos fármacos , Piretrinas/agonistas , Piretrinas/toxicidade , Interferência de RNA , Rosiglitazona , Tiazolidinedionas/farmacologia
9.
Oncotarget ; 6(6): 4394-405, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25726525

RESUMO

PU.1 is a key transcription factor regulating the myeloid differentiation. PU.1-induced monocytic differentiation into macrophage is also important for blood cancer development. Therefore, we chose THP-1 monocytic leukemia cells to investigate the function of a recently discovered IL-32θ. Genetic analyses identified differences in the sequences of IL-32θ and IL-32ß. Using previously established cell lines that stably express IL-32θ and IL-32ß and cell lines transiently expressing IL-32θ, we observed that expression of IL-32θ inhibited phorbol 12-myristate 13-acetate (PMA)-induced monocytic differentiation in both THP-1 and HL-60 cells. IL-32θ also suppressed expression of the macrophage cell surface markers, CD11b, CD18, and CD36. Interestingly, expression of IL-32ß or IL-32θ had no effect on the expression levels of cell cycle related factors. As a result, we concluded that these isoforms did not contribute to PMA-induced cell cycle arrest. IL-32θ was found to modulate expression of PU.1, a transcription factor necessary for myeloid lineage commitment. Transient expression of PU.1 in THP-1/IL-32θ cells rescued the observed differentiation defect. Additionally, transient expression of both CCAAT-enhancer-binding protein α (C/EBPα) and PU.1 in THP-1/IL-32θ cells exhibited synergistic effects in rescuing the differentiation defect. These observations indicate that intracellular IL-32θ inhibits the differentiation of monocytes into macrophages by attenuating PU.1 expression.


Assuntos
Diferenciação Celular/fisiologia , Interleucinas/metabolismo , Leucemia/patologia , Monócitos/patologia , Proteínas Proto-Oncogênicas/biossíntese , Transativadores/biossíntese , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Isoformas de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
10.
Oncotarget ; 5(18): 8765-77, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25245533

RESUMO

A proinflammatory cytokine IL-32 acts as an intracellular mediator. IL-32α interacts with many intracellular molecules, but there are no reports of interaction with a transcriptional repressor BCL6. In this study, we showed that PMA induces an interaction between IL-32α, PKCε, and BCL6, forming a trimer. To identify the mechanism of the interaction, we treated cells with various inhibitors. In HEK293 and THP-1 cell lines, treatment with a pan-PKC inhibitor, PKCε inhibitor, and PKCδ inhibitor decreased BCL6 and IL-32α protein expression. MAPK inhibitors and classical PKC inhibitor did not decrease PMA-induced BCL6 and IL-32α protein expression. Further, the pan-PKC inhibitor and PKCε inhibitor disrupted PMA-induced interaction between IL-32α and BCL6. These data demonstrate that the intracellular interaction between IL-32α and BCL6 is induced by PMA-activated PKCε. PMA induces post-translational modification of BCL6 by conjugation to SUMO-2, while IL-32α inhibits. PKCε inhibition eliminated PMA-induced SUMOylation of BCL6. Inhibition of BCL6 SUMOylation by IL-32α affected the cellular function and activity of the transcriptional repressor BCL6 in THP-1 cells. Thus, we showed that IL-32α is a negative regulator of the transcriptional repressor BCL6. IL-32α inhibits BCL6 SUMOylation by activating PKCε, resulting in the modulation of BCL6 target genes and cellular functions of BCL6.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interleucinas/metabolismo , Leucemia/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Interleucinas/genética , Leucemia/genética , Leucemia/patologia , Proteína Quinase C-épsilon/antagonistas & inibidores , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-6 , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica , Transfecção
11.
Int J Biochem Cell Biol ; 55: 136-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25178676

RESUMO

Interleukin-32 (IL-32) is a proinflammatory cytokine. However, there is growing evidence that IL-32 also plays a mediatory role intracellularly. In this study, we present evidence that IL-32α modifies and inhibits promyelocytic leukemia zinc finger (PLZF), a sequence-specific transcriptional regulator that regulates the expression of a subset of interferon (IFN)-stimulated genes (ISGs). We screened IL-32α-interacting proteins in a human spleen cDNA library using the yeast two-hybrid assay, and investigated the functional relevance of the interaction between IL-32α and PLZF. We demonstrated that IL-32α interacts with protein kinase C (PKC)δ and PKCɛ in a phorbol 12-myristate 13-acetate (PMA) dependent way, and that PKCɛ regulates the interaction of IL-32α with PLZF. We verified the involvement of PKCɛ in the interaction between these proteins by using various PKC inhibitors. PLZF is known to be modified by small ubiquitin-like modifier (SUMO)-1, but it is unclear whether SUMO-2 conjugation of PLZF occurs. We showed that IL-32α inhibited SUMO-2-conjugation of PLZF. Further, we demonstrated that sumoylated PLZF decreased when IL-32α was co-expressed. PKCɛ affected the sumoylation of PLZF only in the presence of IL-32α because PKC inhibitor treatment did not reduce PLZF sumoylation in the absence of IL-32α. We finally investigated whether IL-32α-mediated inhibition of PLZF sumoylation affected the transcriptional activity of PLZF, and demonstrated that the inhibition of sumoylation of PLZF by IL-32α down-regulated ISGs induced by PLZF. Together, our data suggest that IL-32α associates with PLZF and PKCɛ, and then inhibits PLZF sumoylation, resulting in suppression of the transcriptional activity of PLZF.


Assuntos
Interleucinas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Quinase C-épsilon/metabolismo , Dedos de Zinco , Western Blotting , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Imunoprecipitação , Indóis/farmacologia , Interferons/farmacologia , Interleucinas/genética , Fatores de Transcrição Kruppel-Like/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica , Ligação Proteica/efeitos dos fármacos , Proteína Quinase C-épsilon/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido
12.
FEBS Lett ; 588(17): 2822-9, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24996056

RESUMO

It has been well known that IL-32 exerts pro-inflammatory effects on the various inflammatory diseases in clinical studies. Here, we confirmed that IL-32θ, a new isoform of IL-32, decreased the phorbol 12-myristate 13-acetate (PMA)-induced IL-1ß expression in THP-1 human myelomonocyte. We previously reported that the IL-32 isoforms control expressions of other cytokines via novel PKCs. Likewise, IL-32θ interacted with PKCδ, and consequently inhibited PKCδ-mediated phosphorylation of PU.1. Moreover, IL-32θ attenuated the localization of PU.1 into the IL-1ß promoter region. These findings reveal that IL-32θ reduces PKCδ-mediated phosphorylation of PU.1, resulting in attenuation of IL-1ß production.


Assuntos
Interleucina-1beta/biossíntese , Interleucinas/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Interleucina-1beta/genética , Ésteres de Forbol/farmacologia , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Ativação Transcricional/efeitos dos fármacos
13.
Oncol Rep ; 31(6): 2683-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24789165

RESUMO

Luteolin, a flavonoid extracted from a number of plants with recognized anticancer, anti-inflammatory and anti-oxidative activities, inhibits angiogenic processes and modulates multidrug resistance. However, the efficacy and mechanisms of action of this flavonoid agent are still undergoing study. In order to elucidate whether luteolin exhibits an anticancer effect in cervical cancer cells, HeLa cells were incubated with luteolin and apoptosis was assessed by observing nuclear morphological changes, and performing Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. Cell cycle analysis, western blotting, RT-PCR and mitochondrial membrane potential measurements were also carried out. Luteolin showed a significant dose-dependent cytotoxic effect only in human papillomavirus (HPV)-positive cervical cancer cells, when compared to its effect on HPV-negative cervical cancer C33A cells. Expression levels of human papilloma virus E6 and E7 oncogenes were suppressed, those of related factors pRb and p53 were recovered and E2F5 was increased by luteolin treatment. Furthermore, luteolin enhanced the expression of death receptors and death receptor downstream factors such as Fas/FasL, DR5/TRAIL and FADD in HeLa cells, and activated caspase cascades. In particular, luteolin enhanced the activity of caspase-3 and -8 in a dose-dependent manner. Activation of caspase-3 induced caspase-8 activity and vice versa. Luteolin also induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited Bcl-2 and Bcl-xL expression. In conclusion, luteolin exerts anticarcinogenic activity through inhibition of E6 and E7 expression and cross-activation of caspase-3 and -8. Taken together, these results suggest that luteolin induces inactivation of HPV-18 oncogene expression and apoptosis by activating the intrinsic and extrinsic pathways.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Papillomavirus Humano 18/genética , Proteínas Oncogênicas Virais/biossíntese , Neoplasias do Colo do Útero/genética , Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HeLa , Papillomavirus Humano 18/patogenicidade , Humanos , Luteolina , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
14.
Cell Signal ; 26(7): 1514-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24703937

RESUMO

Myeloid-specific CD18 associates with CD11 and plays a critical role in leukocyte adhesion to the endothelium. In this study, we observed that CD18 expression was decreased by IL-32α in THP-1 and K562 cells upon PMA stimulation, and investigated the mechanism by which IL-32α down-regulated CD18 expression. We found that IL-32α suppressed the expression of PU.1, a major transcription factor for CD18. Because we previously demonstrated that IL-32α mediated STAT3 S727 phosphorylation by PKCε, and STAT3 regulates PU.1 expression, we performed time-course analyses of STAT3 S727 phosphorylation and found that IL-32α induces prolonged phosphorylation of STAT3 S727 until 72h after PMA stimulation. The expression pattern of C/EBPα, another transcriptional regulator of PU.1, was not affected by IL-32α. In addition, we showed that STAT3 binding to the PU.1 promoter was suppressed by IL-32α. Thus, we examined the relatedness among these factors and found that IL-32α-mediated STAT3 S727 phosphorylation induced C/EBPα association. When STAT3 was mutated at S727 to proline (S727P), the mutant STAT3 S727P did not interact with C/EBPα. We further demonstrated that only the intact STAT3 interacted with the basic leucine zipper region of C/EBPα. The PU.1 promoter was activated by co-expression of STAT3 and IL-32α upon PMA stimulation. However, the promoter activity was inhibited with STAT3 and C/EBPα co-expression. Therefore, our data suggest that IL-32α-mediated STAT3 S727 phosphorylation induced C/EBPα association, which inhibited PU.1 expression, and then resulted in the down-regulation of CD18 expression.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Antígenos CD18/biossíntese , Interleucinas/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Fator de Transcrição STAT3/metabolismo , Transativadores/biossíntese , Substituição de Aminoácidos , Proteína alfa Estimuladora de Ligação a CCAAT/biossíntese , Antígenos CD11 , Linhagem Celular Tumoral , Regulação para Baixo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Células Mieloides/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica
15.
Cell Biol Toxicol ; 29(4): 259-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23955116

RESUMO

Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Proteínas Oncogênicas Virais/biossíntese , Proteínas E7 de Papillomavirus/biossíntese , Proteínas Repressoras/biossíntese , Neoplasias do Colo do Útero/tratamento farmacológico , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Flavonoides/farmacologia , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/tratamento farmacológico , Extratos Vegetais/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Proteínas Repressoras/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/virologia
16.
Nutr Cancer ; 64(8): 1236-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23163851

RESUMO

The Maillard reaction is a chemical reaction occurring between an amino acid and a reducing sugar, usually requiring thermal processing. Maillard reaction products (MRPs) have antioxidant, antimutagenic, and antibacterial effects, and although 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242), a fructose-tyrosine MRP, appears to inhibit proliferation of cancer cells, its mechanism of action has not been studied in detail. We found that HPB242 treatment modulated expression of cyclins and tumor suppressor genes in SiHa human cervical cancer cell lines: cyclins and phospho-pRB were downregulated, whereas the expression of CDK inhibitors and p53 was enhanced. HPB242 induced apoptosis dose-dependently by suppressing E7 expression and leading to sub-G1 cell-cycle arrest in SiHa cell lines; treatment also led to the proteolytic cleavage of caspase-3, -9, and poly (ADP-ribose) polymerase. Moreover, HPB242 upregulated Fas expression, altered expressions of pro- and antiapoptotic factors, and also inhibited nuclear translocation of nuclear factor κB and phosphorylation of IκB. HPB242 treatment decreased phosphatidyl inositol-3 kinase and p-Akt expression levels, demonstrating that this survival pathway may also be inhibited by HPB242. Cumulatively, HPB242 promotes apoptosis by influencing E7 expression, inducing cell-cycle arrest at sub-G1 phase, and promoting both intrinsic (mitochondrial) and extrinsic (Fas-dependent) apoptosis in SiHa human cervical cancer cells.


Assuntos
Aldeídos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas E7 de Papillomavirus/genética , Fenóis/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas I-kappa B/metabolismo , Reação de Maillard , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
J Biol Chem ; 287(42): 35556-35564, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22927445

RESUMO

IL-32α is known as a proinflammatory cytokine. However, several evidences implying its action in cells have been recently reported. In this study, we present for the first time that IL-32α plays an intracellular mediatory role in IL-6 production using constitutive expression systems for IL-32α in THP-1 cells. We show that phorbol 12-myristate 13-acetate (PMA)-induced increase in IL-6 production by IL-32α-expressing cells was higher than that by empty vector-expressing cells and that this increase occurred in a time- and dose-dependent manner. Treatment with MAPK inhibitors did not diminish this effect of IL-32α, and NF-κB signaling activity was similar in the two cell lines. Because the augmenting effect of IL-32α was dependent on the PKC activator PMA, we tested various PKC inhibitors. The pan-PKC inhibitor Gö6850 and the PKCε inhibitor Ro-31-8220 abrogated the augmenting effect of IL-32α on IL-6 production, whereas the classical PKC inhibitor Gö6976 and the PKCδ inhibitor rottlerin did not. In addition, IL-32α was co-immunoprecipitated with PMA-activated PKCε, and this interaction was totally inhibited by the PKCε inhibitor Ro-31-8220. PMA-induced enhancement of STAT3 phosphorylation was observed only in IL-32α-expressing cells, and this enhancement was inhibited by Ro-31-8220, but not by Gö6976. We demonstrate that IL-32α mediated STAT3 phosphorylation by forming a trimeric complex with PKCε and enhanced STAT3 localization onto the IL-6 promoter and thereby increased IL-6 expression. Thus, our data indicate that the intracellular interaction of IL-32α with PKCε and STAT3 promotes STAT3 binding to the IL-6 promoter by enforcing STAT3 phosphorylation, which results in increased production of IL-6.


Assuntos
Regulação da Expressão Gênica/fisiologia , Interleucina-6/biossíntese , Interleucinas/biossíntese , Monócitos/metabolismo , Proteína Quinase C-épsilon/metabolismo , Fator de Transcrição STAT3/metabolismo , Carcinógenos/farmacologia , Linhagem Celular Tumoral , Ativadores de Enzimas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Interleucinas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/citologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Regiões Promotoras Genéticas/fisiologia , Proteína Quinase C-épsilon/antagonistas & inibidores , Proteína Quinase C-épsilon/genética , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Acetato de Tetradecanoilforbol/farmacologia
18.
Toxicol In Vitro ; 26(1): 67-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22056764

RESUMO

This study evaluated the anti-cancer effects of a naringenin derivative in human cervical cancer cells. In this study, a synthesized naringenin derivative, diethyl 5,7,4'-trihydroxy flavanone N-phenyl hydrazone (N101-2), inhibited cervical cancer cell growth, whereas naringenin itself exhibited no anti-cancer activity. N101-2 treatment inhibited cancer cell viability in a dose- and time-dependent manner through cell cycle arrest at sub-G1 phase, accompanied by an increase in apoptotic cell death. Expression of cyclins and ppRB was down-regulated, whereas that of CDK inhibitors and p53 increased upon N101-2 treatment. Meanwhile, we detected processing of caspases-8, -9, and -3, cleavage of PARP, as well as Bax up-regulation, which indicates activation of mitochondria-emanated intrinsic apoptosis signaling. Treatment with caspase-8 and -3 inhibitors also recovered cell cycling, and Fas/FasL expression increased in N101-2-treated cervical cancer cells, suggesting that Fas-mediated extrinsic apoptosis signaling was also activated. The tumor suppressor PTEN and its upstream regulator PPARγ were up-regulated with coincident inhibition of PI3K and phospho-Akt after N101-2 treatment. Taken together, we could conclude that N101-2 induces apoptosis by arresting the cell cycle at sub-G1 phase, activating mitochondria-emanated intrinsic and Fas-mediated extrinsic signaling pathways, and inhibiting the PI3K/AKT pathway in CaSki and SiHa human cervical cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
19.
J Agric Food Chem ; 59(18): 10286-97, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21877710

RESUMO

Naringenin, a well-known naturally occurring flavonone, demonstrates cytotoxicity in a variety of human cancer cell lines; its inhibitory effects on tumor growth have spurred interest in its therapeutic application. In this study, naringenin was derivatized to produce more effective small-molecule inhibitors of cancer cell proliferation, and the anticancer effects of its derivative, 5-hydroxy-7,4'-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), in non-small-cell lung cancer (NSCLC) cell lines NCI-H460, A549, and NCI-H1299 were investigated. Naringenin itself possesses no cytotoxicity against lung cancer cells. In contrast, N101-43 inhibits proliferation of both NCI-H460 and A549 cell lines; this capacity is lost in p53-lacking NCI-H1299 cells. N101-43 induces apoptosis via sub-G1 cell-cycle arrest in NCI-H460 and via G0/G1 arrest in A549 cells. Expression of apoptosis and cell-cycle regulatory factors is altered: Cyclins A and D1 and phospho-pRb are down-regulated, but expression of CDK inhibitors such as p21, p27, and p53 is enhanced by N101-43 treatment; N101-43 also increases expression levels of the extrinsic death receptor Fas and its binding partner FasL. Furthermore, N101-43 treatment diminishes levels of cell survival factors such as PI3K and p-Akt dose-dependently, and N101-43 additionally induces cleavage of the pro-apoptotic factors caspase-3, caspase-8, and poly ADP-ribose polymerase (PARP). Cumulatively, these investigations show that the naringenin derivative N101-43 induces apoptosis via up-regulation of Fas/FasL expression, activation of caspase cascades, and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 and A549 cells. In conclusion, these data indicate that N101-43 may have potential as an anticancer agent in NSCLC.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Flavanonas/farmacologia , Hidrazonas/farmacologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Ligante Fas/genética , Humanos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Receptor fas/genética
20.
Oncol Rep ; 25(2): 531-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21165565

RESUMO

The family of interferon-induced transmembrane protein (IFITM) genes consists of IFITM1, 2, 3, 5, and 6. They encode cell surface proteins that modulate cell-cell adhesion and cell differentiation. In a previous study, we showed that IFITM1 is involved in the immune escape and metastasis of gastric cancer cells. In this study, we determined the difference in expression of IFITM family genes in tumor-bearing mice. IFITM1 and 6 were found to be significantly increased. IFITM6 gene expression was increased only in the spleen of tumor-bearing mice but not in the bone marrow, lymph node, or thymus. IFITM6 expression was induced in various macrophages, including splenic, thioglycollate-elicited, and bone marrow-derived macrophages, but not in T cells. Lipopolysaccharides (LPS) also increased IFITM6 expression 24 h after administration, and Toll-like receptor 1, 2, 3, 4, and 9 agonists stimulated IFITM6 expression. These findings imply that the increase in IFITM6 expression may be involved in macrophage functions of tumor-bearing mice.


Assuntos
Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Neoplasias/imunologia , Animais , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Macrófagos/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Família Multigênica , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transplante Isogênico , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA