Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 20(1): 94-109, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513810

RESUMO

Monocyte/macrophage lineage cells are highly plastic and can differentiate into various cells under different environmental stimuli. Bone-resorbing osteoclasts are derived from the monocyte/macrophage lineage in response to receptor activator of NF-κB ligand (RANKL). However, the epigenetic signature contributing to the fate commitment of monocyte/macrophage lineage differentiation into human osteoclasts is largely unknown. In this study, we identified RANKL-responsive human osteoclast-specific superenhancers (SEs) and SE-associated enhancer RNAs (SE-eRNAs) by integrating data obtained from ChIP-seq, ATAC-seq, nuclear RNA-seq and PRO-seq analyses. RANKL induced the formation of 200 SEs, which are large clusters of enhancers, while suppressing 148 SEs in macrophages. RANKL-responsive SEs were strongly correlated with genes in the osteoclastogenic program and were selectively increased in human osteoclasts but marginally presented in osteoblasts, CD4+ T cells, and CD34+ cells. In addition to the major transcription factors identified in osteoclasts, we found that BATF binding motifs were highly enriched in RANKL-responsive SEs. The depletion of BATF1/3 inhibited RANKL-induced osteoclast differentiation. Furthermore, we found increased chromatin accessibility in SE regions, where RNA polymerase II was significantly recruited to induce the extragenic transcription of SE-eRNAs, in human osteoclasts. Knocking down SE-eRNAs in the vicinity of the NFATc1 gene diminished the expression of NFATc1, a major regulator of osteoclasts, and osteoclast differentiation. Inhibiting BET proteins suppressed the formation of some RANKL-responsive SEs and NFATc1-associated SEs, and the expression of SE-eRNA:NFATc1. Moreover, SE-eRNA:NFATc1 was highly expressed in the synovial macrophages of rheumatoid arthritis patients exhibiting high-osteoclastogenic potential. Our genome-wide analysis revealed RANKL-inducible SEs and SE-eRNAs as osteoclast-specific signatures, which may contribute to the development of osteoclast-specific therapeutic interventions.


Assuntos
Células da Medula Óssea , Osteoclastos , Ligante RANK , Humanos , Células da Medula Óssea/metabolismo , Diferenciação Celular , Epigênese Genética , Macrófagos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo
2.
Mol Ther ; 31(2): 435-453, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184851

RESUMO

Treating osteoporosis and associated bone fractures remains challenging for drug development in part due to potential off-target side effects and the requirement for long-term treatment. Here, we identify recombinant adeno-associated virus (rAAV)-mediated gene therapy as a complementary approach to existing osteoporosis therapies, offering long-lasting targeting of multiple targets and/or previously undruggable intracellular non-enzymatic targets. Treatment with a bone-targeted rAAV carrying artificial microRNAs (miRNAs) silenced the expression of WNT antagonists, schnurri-3 (SHN3), and sclerostin (SOST), and enhanced WNT/ß-catenin signaling, osteoblast function, and bone formation. A single systemic administration of rAAVs effectively reversed bone loss in both postmenopausal and senile osteoporosis. Moreover, the healing of bone fracture and critical-sized bone defects was also markedly improved by systemic injection or transplantation of AAV-bound allograft bone to the osteotomy sites. Collectively, our data demonstrate the clinical potential of bone-specific gene silencers to treat skeletal disorders of low bone mass and impaired fracture repair.


Assuntos
Fraturas Ósseas , Osteoporose , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Osteoporose/genética , Osteoporose/terapia , Fraturas Ósseas/genética , Fraturas Ósseas/terapia , Osso e Ossos , Terapia Genética
3.
Arthritis Rheumatol ; 74(6): 948-960, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35077015

RESUMO

OBJECTIVE: Hypoxia occurs in tumors, infections, and sites of inflammation, such as in the affected joints of patients with rheumatoid arthritis (RA). It alleviates inflammatory responses and increases bone resorption in inflammatory arthritis by enhancing osteoclastogenesis. The mechanism by which the hypoxia response is linked to osteoclastogenesis and inflammatory bone resorption is unclear. This study was undertaken to evaluate whether the protein lysine-specific demethylase 1 (LSD1) metabolically integrates inflammatory osteoclastogenesis and bone resorption in a state of inflammatory arthritis. METHODS: LSD1-specific inhibitors and gene silencing with small interfering RNAs were used to inhibit the expression of LSD1 in human osteoclast precursor cells derived from CD14-positive monocytes, with subsequent assessment by RNA-sequencing analysis. In experimental mouse models of arthritis, inflammatory osteolysis, or osteoporosis, features of accelerated bone loss and inflammatory osteolysis were analyzed. Furthermore, in blood samples from patients with RA, cis-acting expression quantitative trait loci (cis-eQTL) were analyzed for association with the expression of hypoxia-inducible factor 1α (HIF-1α), and associations between HIF-1α allelic variants and extent of bone erosion were evaluated. RESULTS: In human osteoclast precursor cells, RANKL induced the expression of LSD1 in a mechanistic target of rapamycin-dependent manner. Expression of LSD1 was higher in synovium from RA patients than in synovium from osteoarthritis patients. Inhibition of LSD1 in human osteoclast precursors suppressed osteoclast differentiation. Results of transcriptome analysis identified several LSD1-mediated hypoxia and cell-cycle pathways as key genetic pathways involved in human osteoclastogenesis. Furthermore, HIF-1α protein, which is rapidly degraded by the proteasome in a normoxic environment, was found to be expressed in RANKL-stimulated osteoclast precursor cells. Induction of LSD1 by RANKL stabilized the expression of HIF-1α protein, thereby promoting glycolysis, in conjunction with up-regulation of the transcription factor E2F1. Analyses of cis-eQTL revealed that higher HIF-1α expression was associated with increased bone erosion in patients with RA. Inhibition of LSD1 decreased pathologic bone resorption in mice, both in models of accelerated osteoporosis and models of arthritis and inflammatory osteolysis. CONCLUSION: LSD1 metabolically regulates osteoclastogenesis in an energy-demanding inflammatory environment. These findings provide potential new therapeutic strategies targeting osteoclasts in the management of inflammatory arthritis, including in patients with RA.


Assuntos
Artrite Reumatoide , Reabsorção Óssea , Fator de Transcrição E2F1 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Osteólise , Osteoporose , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Hipóxia Celular , Fator de Transcrição E2F1/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteólise/metabolismo , Osteólise/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Ligante RANK/metabolismo
4.
Cell Rep ; 35(11): 109264, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133930

RESUMO

MYC activates different metabolic programs in a cell-type- and cell-status-dependent manner. However, the role of MYC in inflammatory macrophages has not yet been determined. Metabolic and molecular analyses reveal that MYC, but not hypoxia inducible factor 1 (HIF1), is involved in enhancing early glycolytic flux during inflammatory macrophage polarization. Ablation of MYC decreases lactate production by regulating lactate dehydrogenase (LDH) activity and causes increased inflammatory cytokines by regulating interferon regulatory factor 4 (IRF4) in response to lipopolysaccharide. Moreover, myeloid-specific deletion of MYC and pharmacological inhibition of the MYC/LDH axis enhance inflammation and the bacterial clearance in vivo. These results elucidate the potential role of the MYC/LDH/IRF4 axis in inflammatory macrophages by connecting early glycolysis with inflammatory responses and suggest that modulating early glycolytic flux mediated by the MYC/LDH axis can be used to open avenues for the therapeutic modulation of macrophage polarization to fight against bacterial infection.


Assuntos
Glicólise , Inflamação/metabolismo , Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Bactérias/metabolismo , Citocinas/biossíntese , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata , Mediadores da Inflamação/metabolismo , Ácido Láctico/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/deficiência
5.
J Bone Miner Res ; 36(6): 1104-1116, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33567098

RESUMO

Sexual dimorphism of the skeleton is well documented. At maturity, the male skeleton is typically larger and has a higher bone density than the female skeleton. However, the underlying mechanisms for these differences are not completely understood. In this study, we examined sexual dimorphism in the formation of osteoclasts between cells from female and male mice. We found that the number of osteoclasts in bones was greater in females. Similarly, in vitro osteoclast differentiation was accelerated in female osteoclast precursor (OCP) cells. To further characterize sex differences between female and male osteoclasts, we performed gene expression profiling of cultured, highly purified, murine bone marrow OCPs that had been treated for 3 days with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). We found that 125 genes were differentially regulated in a sex-dependent manner. In addition to genes that are contained on sex chromosomes, transcriptional sexual dimorphism was found to be mediated by genes involved in innate immune and inflammatory response pathways. Furthermore, the NF-κB-NFATc1 axis was activated earlier in female differentiating OCPs, which partially explains the differences in transcriptomic sexual dimorphism in these cells. Collectively, these findings identify multigenic sex-dependent intrinsic difference in differentiating OCPs, which results from an altered response to osteoclastogenic stimulation. In humans, these differences could contribute to the lower peak bone mass and increased risk of osteoporosis that females demonstrate relative to males. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteoclastos , Caracteres Sexuais , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Feminino , Fator Estimulador de Colônias de Macrófagos , Masculino , Camundongos , Fatores de Transcrição NFATC , Osteogênese , Ligante RANK
6.
Bone Res ; 9(1): 4, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33424022

RESUMO

Osteoporosis is a metabolic bone disease with dysregulated coupling between bone resorption and bone formation, which results in decreased bone mineral density. The MEF2C locus, which encodes the transcription factor MADS box transcription enhancer factor 2, polypeptide C (MEF2C), is strongly associated with adult osteoporosis and osteoporotic fractures. Although the role of MEF2C in bone and cartilage formation by osteoblasts, osteocytes, and chondrocytes has been studied, the role of MEF2C in osteoclasts, which mediate bone resorption, remains unclear. In this study, we identified MEF2C as a positive regulator of human and mouse osteoclast differentiation. While decreased MEF2C expression resulted in diminished osteoclastogenesis, ectopic expression of MEF2C enhanced osteoclast generation. Using transcriptomic and bioinformatic approaches, we found that MEF2C promotes the RANKL-mediated induction of the transcription factors c-FOS and NFATc1, which play a key role in osteoclastogenesis. Mechanistically, MEF2C binds to FOS regulatory regions to induce c-FOS expression, leading to the activation of NFATC1 and downstream osteoclastogenesis. Inducible deletion of Mef2c in mice resulted in increased bone mass under physiological conditions and protected mice from bone erosion by diminishing osteoclast formation in K/BxN serum induced arthritis, a murine model of inflammatory arthritis. Our findings reveal direct regulation of osteoclasts by MEF2C, thus adding osteoclasts as a cell type in which altered MEF2C expression or function can contribute to pathological bone remodeling.

7.
Cells ; 9(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967239

RESUMO

Osteoclasts are the sole bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathogenic bone destruction such as inflammatory arthritis. Pharmacologically targeting osteoclasts has been a promising approach to alleviating bone disease, but there remains room for improvement in mitigating drug side effects and enhancing cell specificity. Recently, we demonstrated the crucial role of MYC and its downstream effectors in driving osteoclast differentiation. Despite these advances, upstream regulators of MYC have not been well defined. In this study, we identify nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor known to regulate the expression of phase II antioxidant enzymes, as a novel upstream regulator of MYC. NRF2 negatively regulates receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis through the ERK and p38 signaling-mediated suppression of MYC transcription. Furthermore, the ablation of MYC in osteoclasts reverses the enhanced osteoclast differentiation and activity in NRF2 deficiency in vivo and in vitro in addition to protecting NRF2-deficient mice from pathological bone loss in a murine model of inflammatory arthritis. Our findings indicate that this novel NRF2-MYC axis could be instrumental for the fine-tuning of osteoclast formation and provides additional ways in which osteoclasts could be therapeutically targeted to prevent pathological bone erosion.


Assuntos
Artrite Experimental/genética , Osso e Ossos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Osteoclastos/metabolismo , Osteogênese/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Exp Mol Med ; 52(8): 1239-1254, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32801364

RESUMO

Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions.


Assuntos
Osteoclastos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Doença , Humanos , Ligantes , Modelos Biológicos , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Transdução de Sinais
9.
Curr Opin Pharmacol ; 53: 8-17, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32569976

RESUMO

Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of bone under physiological conditions and numerous pathological conditions, such as osteoporosis, bone metastasis, and inflammatory bone erosion. Nuclear receptors are crucial to various physiological processes, including metabolism, development and inflammation, and function as transcription factors to activate target genes. Synthetic ligands of nuclear receptors are also available for the treatment of metabolic and inflammatory diseases. However, dysregulated bone phenotypes have been documented in patients who take synthetic nuclear receptor ligands as a therapy. Therefore, the effect of nuclear receptors on bone cells has become an important area of exploration; additionally, the molecular mechanisms underlying the action of nuclear receptors in osteoclasts have not been completely understood. Here, we cover the recent progress in our understanding of the roles of nuclear receptors in osteoclasts.


Assuntos
Osteoclastos/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Humanos
10.
Semin Immunopathol ; 41(5): 565-572, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552471

RESUMO

Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of the bone. Defects in osteoclasts thus result in unbalanced bone remodeling, leading to numerous pathological conditions such as osteoporosis, bone metastasis, and inflammatory bone erosion. Metabolism is any process a cell utilizes to meet its energetic demand for biological functions. Along with signaling pathways and osteoclast-specific gene expression programs, osteoclast differentiation activates metabolic programs. The energy generated from metabolic reprogramming in osteoclasts not only supports the phenotypic changes from mononuclear precursor cells to multinuclear osteoclasts, but also facilitates bone resorption, a major function of terminally differentiated, mature osteoclasts. While oxidative phosphorylation is studied as a major metabolic pathway that fulfills the energy demands of osteoclasts, all metabolic pathways are closely interconnected. Therefore, it remains important to understand the various aspects of osteoclast metabolism, including the roles and effects of glycolysis, glutaminolysis, fatty acid synthesis, and fatty acid oxidation. Targeting the pathways associated with metabolic reprogramming has shown beneficial effects on pathological conditions. As a result, it is clear that a deeper understanding of metabolic regulation in osteoclasts will offer broader translational potential for the treatment of human bone disorders.


Assuntos
Reprogramação Celular , Metabolismo Energético , Osteoclastos/metabolismo , Animais , Remodelação Óssea/genética , Reabsorção Óssea , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Glicólise , Humanos , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Biogênese de Organelas , Osteoclastos/citologia , Fosforilação Oxidativa , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
11.
Immunity ; 51(2): 241-257.e9, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31303399

RESUMO

Cytokine tumor necrosis factor (TNF)-mediated macrophage polarization is important for inflammatory disease pathogenesis, but the mechanisms regulating polarization are not clear. We performed transcriptomic and epigenomic analysis of the TNF response in primary human macrophages and revealed late-phase activation of SREBP2, the master regulator of cholesterol biosynthesis genes. TNF stimulation extended the genomic profile of SREBP2 occupancy to include binding to and activation of inflammatory and interferon response genes independently of its functions in sterol metabolism. Genetic ablation of SREBP function shifted the balance of macrophage polarization from an inflammatory to a reparative phenotype in peritonitis and skin wound healing models. Genetic ablation of SREBP activity in myeloid cells or topical pharmacological inhibition of SREBP improved skin wound healing under homeostatic and chronic inflammatory conditions. Our results identify a function and mechanism of action for SREBPs in augmenting TNF-induced macrophage activation and inflammation and open therapeutic avenues for promoting wound repair.


Assuntos
Inflamação/metabolismo , Macrófagos/imunologia , Peritonite/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dermatopatias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Epigenômica , Feminino , Humanos , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Cicatrização
12.
Nat Commun ; 10(1): 3320, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346169

RESUMO

Activation of macrophage proinflammatory and antimicrobial phenotypes is regulated by IFN-γ and LPS via synergistic induction of canonical, inflammatory NF-κB target genes. However, whether IFN-γ negatively regulates components of the LPS response, and how this may affect macrophage activation, is still unclear. Here we use combined transcriptomic and epigenomic approaches to find that IFN-γ selectively abrogates LPS-induced feedback and alters macrophage metabolic pathways by suppressing TLR4-mediated gene activation. In contrast to superinduction of inflammatory genes via enhancers that bind IRF1 and STAT1, IFN-γ represses target enhancers that bind STAT3. TLR4-activated but IFN-γ-suppressed enhancers comprise two subsets discernable by differential regulation of histone acetylation and recruitment of STAT3, CDK8 and cohesin. Our findings thus show that IFN-γ suppresses feedback inhibitory and metabolic components of TLR responses to enhance macrophage activation; they also provide insights for IFN-γ-mediated selective inhibition of TLR4-induced transcription. Such inhibition can contribute to severe and sustained inflammatory responses.


Assuntos
Interferon gama/imunologia , Macrófagos/imunologia , Receptor 4 Toll-Like/imunologia , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/imunologia , Ativação de Macrófagos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Receptor 4 Toll-Like/genética
13.
Cell Mol Life Sci ; 75(14): 2519-2528, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29670999

RESUMO

Osteoclasts are bone-resorbing cells that play an essential role in bone remodeling. Defects in osteoclasts result in unbalanced bone remodeling and are linked to many bone diseases including osteoporosis, rheumatoid arthritis, primary bone cancer, and skeletal metastases. Receptor activator of NF-kappaB ligand (RANKL) is a classical inducer of osteoclast formation. In the presence of macrophage-colony-stimulating factor, RANKL and co-stimulatory signals synergistically regulate osteoclastogenesis. However, recent discoveries of alternative pathways for RANKL-independent osteoclastogenesis have led to a reassessment of the traditional mechanisms that regulate osteoclast formation. In this review, we provide an overview of signaling pathways and other regulatory elements governing osteoclastogenesis. We also identify how osteoclastogenesis is altered in pathological conditions and discuss therapeutic targets in osteoclasts for the treatment of skeletal diseases.


Assuntos
Remodelação Óssea , Reabsorção Óssea/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Animais , Doenças Ósseas/metabolismo , Humanos , Modelos Biológicos , Transdução de Sinais
14.
JCI Insight ; 2(22)2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202453

RESUMO

While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts.


Assuntos
Reabsorção Óssea/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Estrogênios/metabolismo , Osteogênese/fisiologia , Transdução de Sinais , Animais , Canais de Cálcio Tipo L/genética , Proliferação de Células , Condrócitos/patologia , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo II/metabolismo , Estrogênios/genética , Feminino , Fêmur/patologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos , Osteoprotegerina/metabolismo , Ovariectomia
15.
Nat Immunol ; 18(10): 1104-1116, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825701

RESUMO

Cross-regulation of Toll-like receptor (TLR) responses by cytokines is essential for effective host defense, avoidance of toxicity and homeostasis, but the underlying mechanisms are not well understood. Our comprehensive epigenomics approach to the analysis of human macrophages showed that the proinflammatory cytokines TNF and type I interferons induced transcriptional cascades that altered chromatin states to broadly reprogram responses induced by TLR4. TNF tolerized genes encoding inflammatory molecules to prevent toxicity while preserving the induction of genes encoding antiviral and metabolic molecules. Type I interferons potentiated the inflammatory function of TNF by priming chromatin to prevent the silencing of target genes of the transcription factor NF-κB that encode inflammatory molecules. The priming of chromatin enabled robust transcriptional responses to weak upstream signals. Similar chromatin regulation occurred in human diseases. Our findings reveal that signaling crosstalk between interferons and TNF is integrated at the level of chromatin to reprogram inflammatory responses, and identify previously unknown functions and mechanisms of action of these cytokines.


Assuntos
Epigênese Genética , Inflamação/etiologia , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Análise por Conglomerados , Biologia Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Epigenômica/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lipopolissacarídeos/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fatores de Transcrição/metabolismo
16.
Immunity ; 47(2): 235-250.e4, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813657

RESUMO

Mechanisms by which interferon (IFN)-γ activates genes to promote macrophage activation are well studied, but little is known about mechanisms and functions of IFN-γ-mediated gene repression. We used an integrated transcriptomic and epigenomic approach to analyze chromatin accessibility, histone modifications, transcription-factor binding, and gene expression in IFN-γ-primed human macrophages. IFN-γ suppressed basal expression of genes corresponding to an "M2"-like homeostatic and reparative phenotype. IFN-γ repressed genes by suppressing the function of enhancers enriched for binding by transcription factor MAF. Mechanistically, IFN-γ disassembled a subset of enhancers by inducing coordinate suppression of binding by MAF, lineage-determining transcription factors, and chromatin accessibility. Genes associated with MAF-binding enhancers were suppressed in macrophages isolated from rheumatoid-arthritis patients, revealing a disease-associated signature of IFN-γ-mediated repression. These results identify enhancer inactivation and disassembly as a mechanism of IFN-γ-mediated gene repression and reveal that MAF regulates the macrophage enhancer landscape and is suppressed by IFN-γ to augment macrophage activation.


Assuntos
Artrite Reumatoide/imunologia , Montagem e Desmontagem da Cromatina , Interferon gama/metabolismo , Macrófagos/imunologia , Proteínas Proto-Oncogênicas c-maf/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Citocinas/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-maf/genética , Transcriptoma
17.
Immunity ; 47(1): 66-79.e5, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723554

RESUMO

Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL-induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine-driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F-metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite Reumatoide/imunologia , Macrófagos/imunologia , Osteogênese/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator de Transcrição E2F1/metabolismo , Feminino , Humanos , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais
18.
J Clin Invest ; 127(7): 2555-2568, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28530645

RESUMO

Osteoporosis is a metabolic bone disorder associated with compromised bone strength and an increased risk of fracture. Inhibition of the differentiation of bone-resorbing osteoclasts is an effective strategy for the treatment of osteoporosis. Prior work by our laboratory and others has shown that MYC promotes osteoclastogenesis in vitro, but the underlying mechanisms are not well understood. In addition, the in vivo importance of osteoclast-expressed MYC in physiological and pathological bone loss is not known. Here, we have demonstrated that deletion of Myc in osteoclasts increases bone mass and protects mice from ovariectomy-induced (OVX-induced) osteoporosis. Transcriptomic analysis revealed that MYC drives metabolic reprogramming during osteoclast differentiation and functions as a metabolic switch to an oxidative state. We identified a role for MYC action in the transcriptional induction of estrogen receptor-related receptor α (ERRα), a nuclear receptor that cooperates with the transcription factor nuclear factor of activated T cells, c1 (NFATc1) to drive osteoclastogenesis. Accordingly, pharmacological inhibition of ERRα attenuated OVX-induced bone loss in mice. Our findings highlight a MYC/ERRα pathway that contributes to physiological and pathological bone loss by integrating the MYC/ERRα axis to drive metabolic reprogramming during osteoclast differentiation.


Assuntos
Diferenciação Celular , Osteoclastos/metabolismo , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/patologia , Osteoporose/terapia , Proteínas Proto-Oncogênicas c-myc/genética , Receptores de Estrogênio/genética , Transcriptoma , Receptor ERRalfa Relacionado ao Estrogênio
19.
Sci Rep ; 6: 31959, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558590

RESUMO

Tumor necrosis factor (TNF) is best known for inducing a rapid but transient NF-κB-mediated inflammatory response. We investigated later phases of TNF signaling, after the initial transient induction of inflammatory genes has subsided, in primary human macrophages. TNF signaling induced expression of late response genes, including inhibitors of NF-κB and TLR signaling, with delayed and sustained kinetics 6-24 hr after TNF stimulation. A subset of late phase genes was expressed in rheumatoid arthritis synovial macrophages, confirming their expression under chronic inflammatory conditions in vivo. Expression of a subset of late phase genes was mediated by autocrine IL-10, which activated STAT3 with delayed kinetics. Hypoxia, which occurs at sites of infection or inflammation where TNF is expressed, suppressed this IL-10-STAT3 autocrine loop and expression of late phase genes. TNF-induced expression of IL-10 and downstream genes was also dependent on signaling by mTORC1, which senses the metabolic state of cells and is modulated by hypoxia. These results reveal an mTORC1-dependent IL-10-mediated late phase response to TNF by primary human macrophages, and identify suppression of IL-10 responses as a new mechanism by which hypoxia can promote inflammation. Thus, hypoxic and metabolic pathways may modulate TNF responses during chronic inflammation.


Assuntos
Hipóxia Celular , Interleucina-10/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Clusterina/genética , Clusterina/metabolismo , Humanos , Interleucina-10/genética , Lectinas/genética , Lectinas/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
20.
J Cell Physiol ; 231(2): 449-458, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26189496

RESUMO

Investigations on the therapeutic effects of intravenous immunoglobulin (IVIG) have focused on the suppression of autoantibody and immune complex-mediated inflammatory pathogenesis. Inflammatory diseases such as rheumatoid arthritis are often accompanied by excessive bone erosion but the effect of IVIG on osteoclasts, bone-resorbing cells, has not been studied. Here, we investigate whether IVIG directly regulates osteoclast differentiation and has therapeutic potential for suppressing osteoclast-mediated pathologic bone resorption. IVIG or cross-linking of Fcγ receptors with plate-bound IgG suppressed receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteoclastogenesis and expression of osteoclast-related genes such as integrin ß3 and cathepsin K in a dose-dependent manner. Mechanistically, IVIG or plate-bound IgG suppressed osteoclastogenesis by downregulating RANKL-induced expression of NFATC1, the master regulator of osteoclastogenesis. IVIG suppressed NFATC1 expression by attenuating RANKL-induced NF-κB signaling, explained in part by induction of the inflammatory signaling inhibitor A20. IVIG administration attenuated in vivo osteoclastogenesis and suppressed bone resorption in the tumor necrosis factor (TNF)-induced calvarial osteolysis model. Our findings show that, in addition to suppressing inflammation, IVIG directly inhibits osteoclastogenesis through a mechanism involving suppression of RANK signaling. Direct suppression of osteoclast differentiation may provide beneficial effects on preserving bone mass when IVIG is used to treat rheumatic disorders.


Assuntos
Reabsorção Óssea/terapia , Cisteína Endopeptidases/biossíntese , Imunoglobulinas Intravenosas/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Ligante RANK/metabolismo , Doenças Reumáticas/metabolismo , Doenças Reumáticas/patologia , Doenças Reumáticas/terapia , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA