Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 92, 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37032328

RESUMO

Neuroinflammation is an important component of many neurodegenerative diseases, whether as a primary cause or a secondary outcome. For that reason, either as diagnostic tools or to monitor progression and/or pharmacological interventions, there is a need for robust biomarkers of neuroinflammation in the brain. Mitochondrial TSPO (18 kDa Translocator protein) is one of few available biomarkers of neuroinflammation for which there are clinically available PET imaging agents. In this study, we further characterised neuroinflammation in a mouse model of prion-induced chronic neurodegeneration (ME7) including a pharmacological intervention via a CSF1R inhibitor. This was achieved by autoradiographic binding of the second-generation TSPO tracer, [3H]PBR28, along with a more comprehensive examination of the cellular contributors to the TSPO signal changes by immunohistochemistry. We observed regional increases of TSPO in the ME7 mouse brains, particularly in the hippocampus, cortex and thalamus. This increased TSPO signal was detected in the cells of microglia/macrophage lineage as well as in astrocytes, endothelial cells and neurons. Importantly, we show that the selective CSF1R inhibitor, JNJ-40346527 (JNJ527), attenuated the disease-dependent increase in TSPO signal, particularly in the dentate gyrus of the hippocampus, where JNJ527 attenuated the number of Iba1+ microglia and neurons, but not GFAP+ astrocytes or endothelial cells. These findings suggest that [3H]PBR28 quantitative autoradiography in combination with immunohistochemistry are important translational tools for detecting and quantifying neuroinflammation, and its treatments, in neurodegenerative disease. Furthermore, we demonstrate that although TSPO overexpression in the ME7 brains was driven by various cell types, the therapeutic effect of the CSF1R inhibitor was primarily to modulate TSPO expression in microglia and neurons, which identifies an important route of biological action of this particular CSF1R inhibitor and provides an example of a cell-specific effect of this type of therapeutic agent on the neuroinflammatory process.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Camundongos , Animais , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , Receptores de GABA/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Macrófagos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurônios/metabolismo , Doenças Priônicas/metabolismo , Biomarcadores/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 47(4): 958-966, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31897589

RESUMO

PURPOSE: Integrin αvß6 belongs to the RGD subset of the integrin family, and its expression levels are a prognostic and theranostic factor in some types of cancer and pulmonary fibrosis. This paper describes the GMP radiolabelling of the synthetic 20 amino acid peptide A20FMDV2 (NAVPNLRGDLQVLAQKVART), derived from the foot-and-mouth disease virus, and characterises the use of [18F]FB-A20FMDV2 as a high affinity, specific and selective PET radioligand for the quantitation and visualisation of αvß6 in rodent lung to support human translational studies. METHODS: The synthesis of [18F]FB-A20FMDV2 was performed using a fully automated and GMP-compliant process. Sprague-Dawley rats were used to perform homologous (unlabelled FB-A20FMDV2) and heterologous (anti-αvß6 antibody 8G6) blocking studies. In order to generate a dosimetry estimate, tissue residence times were generated, and associated tissue exposure and effective dose were calculated using the Organ Level Internal Dose Assessment/Exponential Modelling (OLINDA/EXM) software. RESULTS: [18F]FB-A20FMDV2 synthesis was accomplished in 180 min providing ~800 MBq of [18F]FB-A20FMDV2 with a molar activity of up to 150 GBq/µmol and high radiochemical purity (> 97%). Following i.v. administration to rats, [18F]FB-A20FMDV2 was rapidly metabolised with intact radiotracer representing 5% of the total radioactivity present in rat plasma at 30 min. For the homologous and heterologous block in rats, lung-to-heart SUV ratios at 30-60 min post-administration of [18F]FB-A20FMDV2 were reduced by 38.9 ± 6.9% and 56 ± 19.2% for homologous and heterologous block, respectively. Rodent biodistribution and dosimetry calculations using OLINDA/EXM provided a whole body effective dose in humans 33.5 µSv/MBq. CONCLUSION: [18F]FB-A20FMDV2 represents a specific and selective PET ligand to measure drug-associated αvß6 integrin occupancy in lung. The effective dose, extrapolated from rodent data, is in line with typical values for compounds labelled with fluorine-18 and combined with the novel fully automated and GMP-compliant synthesis and allows for clinical use in translational studies.


Assuntos
Integrinas , Roedores , Animais , Antígenos de Neoplasias , Cadeias beta de Integrinas , Integrinas/metabolismo , Pulmão/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Roedores/metabolismo , Distribuição Tecidual
3.
EJNMMI Res ; 8(1): 71, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30062395

RESUMO

BACKGROUND: We measured whole body distribution of 11C-BU99008, a new PET biomarker for non-invasive identification of the imidazoline2 binding site. The purpose of this phase I study was to evaluate the biodistribution and radiation dosimetry of 11C-BU99008 in healthy human subjects. METHODS: A single bolus injection of 11C-BU99008 (296 ± 10.5 MBq) was administered to four healthy subjects who underwent whole-body PET/CT over 120 min from the cranial vertex to the mid-thigh. Volumes of interest were drawn around visually identifiable source organs to generate time-activity curves (TAC). Residence times were determined from time-activity curves. Absorbed doses to individual organs and the whole body effective dose were calculated using OLINDA/EXM 1.1 for each subject. RESULTS: The highest measured activity concentration was in the kidney and spleen. The longest residence time was in the muscle at 0.100 ± 0.023 h, followed by the liver at 0.067 ± 0.015 h and lungs at 0.052 ± 0.010 h. The highest mean organ absorbed dose was within the heart wall (0.028 ± 0.002 mGy/MBq), followed by the kidneys (0.026 ± 0.005 mGy/MBq). The critical organ was the heart wall. The total mean effective dose averaged over subjects was estimated to be 0.0056 ± 0.0004 mSv/MBq for an injection of 11C-BU99008. CONCLUSIONS: The biodistribution of 11C-BU99008 has been shown here for the first time in humans. Our dosimetry data showed the total mean effective dose over all subjects was 0.0056 ± 0.0004 mSv/MBq, which would result in a total effective dose of 1.96 mSv for a typical injection of 350 MBq of 11C-BU99008. The effective dose is not appreciably different from those obtained with other 11C tracers.

4.
J Nucl Med Technol ; 46(2): 136-143, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29438002

RESUMO

The αvß6 integrin is involved in the pathogenesis of cancer and fibrosis. A radiolabeled 20-amino-acid αvß6-binding peptide, derived from the foot and mouth virus (NAVPNLRGDLQVLAQKVART [A20FMDV2]), has been developed to image αvß6 levels preclinically. This study was designed to translate these findings into a clinical PET imaging protocol to measure the expression of αvß6 in humans. Methods: Preclinical toxicology was undertaken, and a direct immunoassay was developed for 4-fluorobenzamide (FB)-A20FMDV2. Four healthy human subjects (2 male and 2 female) received a single microdose of 18F-FB-A20FMDV2 followed by a multibed PET scan of the whole body over more than 3 h. Results: There were no findings in the preclinical toxicology assessments, and no anti-A20FMDV2 antibodies were detected before or after dosing with the PET ligand. The mean and SD of the administered mass of 18F-FB-A20FMDV2 was 8.7 ± 4.4 µg (range, 2.7-13.0 µg). The mean administered activity was 124 ± 20 MBq (range, 98-145 MBq). There were no adverse or clinically detectable pharmacologic effects in any of the subjects. No significant changes in vital signs, laboratory study results, or electrocardiography results were observed. Uptake of radioactivity was observed in the thyroid, salivary glands, liver, stomach wall, spleen, kidneys, ureters, and bladder. Time-activity curves indicated that the highest activity was in the bladder content, followed by the kidneys, small intestine, stomach, liver, spleen, thyroid, and gallbladder. The largest component of the residence times was the voided urine, followed by muscle, bladder, and liver. Using the mean residence time over all subjects as input to OLINDA/EXM, the effective dose was determined to be 0.0217 mSv/MBq; using residence times from single subjects gave an SD of 0.0020 mSv/MBq from the mean. The critical organ was the urinary bladder, with an absorbed dose of 0.18 mGy/MBq. Conclusion:18F-FB-A20FMDV2 successfully passed toxicology criteria, showed no adverse effects in this first-in-humans study, and has an effective dose that enables multiple scans in a single subject.


Assuntos
Antígenos de Neoplasias/metabolismo , Radioisótopos de Flúor , Integrinas/metabolismo , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Doses de Radiação , Segurança , Idoso , Sequência de Aminoácidos , Feminino , Vírus da Febre Aftosa , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/química , Radiometria , Distribuição Tecidual , Proteínas Virais/química
5.
Oncotarget ; 6(39): 41736-49, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26497682

RESUMO

Our identification of dysregulation of the AKT pathway in ovarian cancer as a platinum resistance specific event led to a comprehensive analysis of in vitro, in vivo and clinical behaviour of the AKT inhibitor GSK2141795. Proteomic biomarker signatures correlating with effects of GSK2141795 were developed using in vitro and in vivo models, well characterised for related molecular, phenotypic and imaging endpoints. Signatures were validated in temporally paired biopsies from patients treated with GSK2141795 in a clinical study. GSK2141795 caused growth-arrest as single agent in vitro, enhanced cisplatin-induced apoptosis in vitro and reduced tumour volume in combination with platinum in vivo. GSK2141795 treatment in vitro and in vivo resulted in ~50-90% decrease in phospho-PRAS40 and 20-80% decrease in fluoro-deoxyglucose (FDG) uptake. Proteomic analysis of GSK2141795 in vitro and in vivo identified a signature of pathway inhibition including changes in AKT and p38 phosphorylation and total Bim, IGF1R, AR and YB1 levels. In patient biopsies, prior to treatment with GSK2141795 in a phase 1 clinical trial, this signature was predictive of post-treatment changes in the response marker CA125. Development of this signature represents an opportunity to demonstrate the clinical importance of AKT inhibition for re-sensitisation of platinum resistant ovarian cancer to platinum.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Cisplatino/uso terapêutico , Diaminas/uso terapêutico , Complexos Multiproteicos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biópsia , Antígeno Ca-125/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/metabolismo , Camundongos Nus , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Fenótipo , Fosforilação , Valor Preditivo dos Testes , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Nucl Med ; 54(1): 139-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23223380

RESUMO

UNLABELLED: Changes in the density of imidazoline-I(2) binding sites have been observed in a range of neurologic disorders including Alzheimer's disease, Huntington's chorea, and glial tumor; however, the precise function of these sites remains unclear. A PET probe for I(2) binding sites would further our understanding of the target and may find application as a biomarker for early disease diagnosis. Compound BU99008 has previously been identified as a promising I(2) ligand from autoradiography studies, displaying high affinity and good selectivity toward the target. In this study, BU99008 was radiolabeled with (11)C in order to image the I(2) binding sites in vivo using PET. METHODS: (11)C-BU99008 was radiolabeled by N-alkylation of the desmethyl precursor using (11)C-methyl iodide. A series of PET experiments was performed to investigate the binding of (11)C-BU99008 in porcine brains, in the presence or absence of a nonradiolabeled, competing I(2) ligand, BU224. RESULTS: (11)C-BU99008 was obtained in good yield and specific activity. In vivo, (11)C-BU99008 displayed good brain penetration and gave a heterogeneous distribution with high uptake in the thalamus and low uptake in the cortex and cerebellum. (11)C-BU99008 brain kinetics were well described by the 1-tissue-compartment model, which was used to provide estimates for the total volume of distribution (V(T)) across brain regions of interest. Baseline V(T) values were ranked in the following order: thalamus > striatum > hippocampus > frontal cortex ≥ cerebellum, consistent with the known distribution and concentration of I(2) binding sites. Administration of a selective I(2) binding site ligand, BU224, reduced the V(T) to near-homogeneous levels in all brain regions. CONCLUSION: (11)C-BU99008 appears to be a suitable PET radioligand for imaging the I(2) binding sites in vivo.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imidazóis , Imidazolinas/metabolismo , Indóis , Tomografia por Emissão de Pósitrons/métodos , Animais , Sítios de Ligação , Radioisótopos de Carbono , Imidazóis/sangue , Imidazóis/química , Imidazóis/metabolismo , Indóis/sangue , Indóis/química , Indóis/metabolismo , Cinética , Ligantes , Radioquímica , Suínos
7.
Synapse ; 66(6): 542-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22290740

RESUMO

The density of the Imidazoline2 binding site (I2BS) has been shown to change in psychiatric conditions such as depression and addiction, along with neurodegenerative disorders such as Alzheimer's disease and Huntington's chorea. The presence of I2BS on glial cells and the possibility that they may in some way regulate glial fibrillary acidic protein has led to increased interest into the role of I2BS and I2BS ligands in conditions characterized by marked gliosis. In addition, it has been suggested that I2BS may be a marker for human glioblastomas. Therefore, the development of a positron emission tomography (PET) radioligand for the I2BS would be of major benefit in our understanding of these conditions. We now report the successful synthesis and initial pharmacological evaluation of potential PET radioligands for the I2BS as well as the tritiation and characterization of the most favorable of the series, BU99008 (6), both in vitro and ex vivo in rat. The series as a whole demonstrated excellent affinity and selectivity for the I2BS, with BU99008 (6) selected as the lead candidate to be taken forward for in vivo assessment. BU99008 (6) showed very good affinity for the I2BS (K(i) of 1.4 nM; K(d) = 1.3 nM), good selectivity compared with the α2 -adrenoceptor (909-fold). In addition, following peripheral administration, [³H]BU99008 demonstrated a heterogenous uptake into the rat brain consistent with the known distribution of the I2BS in vivo. This, and the amenability of BU99008 (6) to radiolabeling with a positron-emitting radioisotope, indicates its potential as a PET radioligand for imaging the I2BS in vivo.


Assuntos
Imidazóis/química , Imidazóis/metabolismo , Receptores de Imidazolinas/química , Indóis/química , Indóis/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Autorradiografia , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Receptores de Imidazolinas/metabolismo , Marcação por Isótopo , Ligantes , Masculino , Especificidade de Órgãos , Ensaio Radioligante , Ratos , Ratos Wistar
8.
Synapse ; 55(4): 270-9, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15668983

RESUMO

Cyclic AMP (cAMP) is a continually produced nucleotide which is inactivated by hydrolysis to 5'AMP via phosphodiesterase 4 (PDE4) enzymes. Rolipram is a selective PDE4 inhibitor which exists in two enantiomeric forms, R(-) and S(+). Both of these enantiomers have previously been labelled with carbon-11 and used as positron emission tomography (PET) ligands for measuring PDE4 expression and function, and indirectly to explore the function of the cAMP second messenger, in vivo, using PET. The aim of these studies was to relate the in vitro affinities of the two rolipram enantiomers using standard pharmacological assays with the in vivo behaviour of the two enantiomers using PET. In vitro competition assays were performed using rat cortical membranes and [(3)H]R(-)- and [(3)H]S(+)-rolipram with increasing concentrations of either unlabelled R(-)- or S(+)-rolipram. In vivo, a series of PET studies were performed in the porcine brain using [(11)C]R(-)-rolipram with co-administration of increasing doses of either unlabelled R(-)- or S(+)-rolipram. Additional in vivo PET studies were performed using [(11)C]S(+)-rolipram with saturating doses of rolipram. In all studies, R(-)-rolipram exhibited a higher affinity for the PDE4 enzyme than S(+)-rolipram. The calculated affinity ratios were 7.97 from the in vitro studies; 12.5 from the in vivo studies using [(11)C]R(-)-rolipram; and 14.7 from the in vivo studies using [(11)C]S(+)-rolipram. To conclude, the in vitro affinities of R(-)- and S(+)-rolipram predict their apparent in vivo behaviour in the porcine brain, as measured by PET.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/análise , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Encéfalo/enzimologia , Inibidores de Fosfodiesterase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Rolipram/metabolismo , Marcadores de Afinidade/metabolismo , Marcadores de Afinidade/farmacocinética , Animais , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Radioisótopos de Carbono , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Técnicas In Vitro , Masculino , Inibidores de Fosfodiesterase/farmacocinética , Ratos , Ratos Sprague-Dawley , Rolipram/farmacocinética , Estereoisomerismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA